Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317754114> ?p ?o ?g. }
- W4317754114 endingPage "108821" @default.
- W4317754114 startingPage "108821" @default.
- W4317754114 abstract "Quantifying greenhouse gas (GHG) emissions from irrigated paddy fields is of great significance for addressing climate change. Machine learning (ML) provides an alternative to empirical models and biogeochemical models, but it has not been used to simulate GHG emissions from paddy fields. In this study, a three-year field experiment dataset of paddy fields under controlled irrigation (CI, a kind of water-saving irrigation (WSI) technology) and flood irrigation (FI) in Kunshan, China, was collected, as well as a global dataset on WSI and FI. Then, the stacking ensemble model was developed based on three basic ML models, random forest (RF), K-Nearest Neighbor regression (KNN), gradient boosting regression (GBR), and a meta-learner, linear Regression (LR). Those models were used for the first time to simulate CH4 and N2O emissions on different time scales from paddy fields under WSI and FI. The results showed that the cumulative CH4 and N2O emissions from the WSI paddy fields decreased by 61.14% and increased by 19.52%, respectively, compared with FI. The ML algorithm can be applied to simulate daily, growth stages, and cumulative GHG emissions from paddy fields, but the performance of the linear regression model was worse than other ML models. Compared with the basic models, the stacking model improved the accuracy, improving the R2 by 0.37∼13.36% and reducing the RMSE by 3.23∼42.78%. Soil redox, temperature, and moisture are necessary for accurate modeling. Meanwhile, training the model using data from WSI and FI separately is beneficial to improve the accuracy of the model. The availability of the stacking model in other stations was verified based on literature data, with R2 varying between 0.7634 and 0.9985. Therefore, the stacking model is recommended to predict GHG emissions at different time scales from paddy fields, and this method can be extended to estimate GHG from paddy fields at various stations around the world." @default.
- W4317754114 created "2023-01-23" @default.
- W4317754114 creator A5008202260 @default.
- W4317754114 creator A5028843362 @default.
- W4317754114 creator A5077410546 @default.
- W4317754114 creator A5081558629 @default.
- W4317754114 date "2023-03-01" @default.
- W4317754114 modified "2023-09-27" @default.
- W4317754114 title "Ensemble machine learning for modeling greenhouse gas emissions at different time scales from irrigated paddy fields" @default.
- W4317754114 cites W1902970891 @default.
- W4317754114 cites W1925671998 @default.
- W4317754114 cites W1940735250 @default.
- W4317754114 cites W1999897898 @default.
- W4317754114 cites W2000904666 @default.
- W4317754114 cites W2004076523 @default.
- W4317754114 cites W2064453359 @default.
- W4317754114 cites W2070493638 @default.
- W4317754114 cites W2071779454 @default.
- W4317754114 cites W2136174619 @default.
- W4317754114 cites W2136596893 @default.
- W4317754114 cites W2143085858 @default.
- W4317754114 cites W2160320155 @default.
- W4317754114 cites W2227813342 @default.
- W4317754114 cites W2440351384 @default.
- W4317754114 cites W2502549309 @default.
- W4317754114 cites W2520751773 @default.
- W4317754114 cites W2585609546 @default.
- W4317754114 cites W2608050375 @default.
- W4317754114 cites W2625568783 @default.
- W4317754114 cites W2731562193 @default.
- W4317754114 cites W2755302004 @default.
- W4317754114 cites W2765937703 @default.
- W4317754114 cites W2796095619 @default.
- W4317754114 cites W28412257 @default.
- W4317754114 cites W2884398710 @default.
- W4317754114 cites W2885354990 @default.
- W4317754114 cites W2889450245 @default.
- W4317754114 cites W2890978405 @default.
- W4317754114 cites W2905151518 @default.
- W4317754114 cites W2911964244 @default.
- W4317754114 cites W2912820896 @default.
- W4317754114 cites W2913550516 @default.
- W4317754114 cites W2914965248 @default.
- W4317754114 cites W2916599471 @default.
- W4317754114 cites W2944090964 @default.
- W4317754114 cites W2947152669 @default.
- W4317754114 cites W2953947605 @default.
- W4317754114 cites W2955270041 @default.
- W4317754114 cites W2955921102 @default.
- W4317754114 cites W2956497647 @default.
- W4317754114 cites W2974516669 @default.
- W4317754114 cites W2979781748 @default.
- W4317754114 cites W2981283263 @default.
- W4317754114 cites W2983257479 @default.
- W4317754114 cites W2985877818 @default.
- W4317754114 cites W2995678734 @default.
- W4317754114 cites W3005793216 @default.
- W4317754114 cites W3012643775 @default.
- W4317754114 cites W3014747440 @default.
- W4317754114 cites W3016830854 @default.
- W4317754114 cites W3036013648 @default.
- W4317754114 cites W3036873236 @default.
- W4317754114 cites W3039016011 @default.
- W4317754114 cites W3039898056 @default.
- W4317754114 cites W3087070249 @default.
- W4317754114 cites W3111700100 @default.
- W4317754114 cites W3112324415 @default.
- W4317754114 cites W3112589833 @default.
- W4317754114 cites W3112719143 @default.
- W4317754114 cites W3135734628 @default.
- W4317754114 cites W3137773737 @default.
- W4317754114 cites W3159857135 @default.
- W4317754114 cites W3174098186 @default.
- W4317754114 cites W3181827495 @default.
- W4317754114 cites W3188138268 @default.
- W4317754114 cites W3188145474 @default.
- W4317754114 cites W3192482461 @default.
- W4317754114 cites W3195380442 @default.
- W4317754114 cites W3200060725 @default.
- W4317754114 cites W3206081734 @default.
- W4317754114 cites W3206639824 @default.
- W4317754114 cites W4205773987 @default.
- W4317754114 doi "https://doi.org/10.1016/j.fcr.2023.108821" @default.
- W4317754114 hasPublicationYear "2023" @default.
- W4317754114 type Work @default.
- W4317754114 citedByCount "4" @default.
- W4317754114 countsByYear W43177541142023 @default.
- W4317754114 crossrefType "journal-article" @default.
- W4317754114 hasAuthorship W4317754114A5008202260 @default.
- W4317754114 hasAuthorship W4317754114A5028843362 @default.
- W4317754114 hasAuthorship W4317754114A5077410546 @default.
- W4317754114 hasAuthorship W4317754114A5081558629 @default.
- W4317754114 hasConcept C105795698 @default.
- W4317754114 hasConcept C119857082 @default.
- W4317754114 hasConcept C127413603 @default.
- W4317754114 hasConcept C133199616 @default.
- W4317754114 hasConcept C152877465 @default.
- W4317754114 hasConcept C159390177 @default.