Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317754306> ?p ?o ?g. }
- W4317754306 endingPage "137714" @default.
- W4317754306 startingPage "137714" @default.
- W4317754306 abstract "The heavy quark momentum diffusion coefficient ($kappa$) is one of the most essential ingredients for the Langevin description of heavy quark dynamics. In the temperature regime relevant to the heavy ion collision phenomenology, a substantial difference exists between the lattice estimations of $kappa$ and the corresponding leading order (LO) result from the hard thermal loop (HTL) perturbation theory. Moreover, the indication of poor convergence in the next-to-leading order (NLO) perturbative analysis has motivated the development of several approaches to incorporate the non-perturbative effects in the heavy quark phenomenology. In this work, we estimate the heavy quark diffusion coefficient based on the Gribov-Zwanziger prescription. In this framework, the gluon propagator depends on the temperature-dependent Gribov mass parameter, which has been obtained self-consistently from the one-loop gap equation. Incorporating this modified gluon propagator in the analysis, we find a reasonable agreement with the existing lattice estimations of $kappa$ within the model uncertainties." @default.
- W4317754306 created "2023-01-23" @default.
- W4317754306 creator A5004381392 @default.
- W4317754306 creator A5007397451 @default.
- W4317754306 creator A5012361308 @default.
- W4317754306 creator A5059728753 @default.
- W4317754306 date "2023-03-01" @default.
- W4317754306 modified "2023-10-07" @default.
- W4317754306 title "Estimation of the diffusion coefficient of heavy quarks in light of Gribov-Zwanziger action" @default.
- W4317754306 cites W1514487823 @default.
- W4317754306 cites W1536455550 @default.
- W4317754306 cites W1581228648 @default.
- W4317754306 cites W1782855883 @default.
- W4317754306 cites W1809664919 @default.
- W4317754306 cites W1837517657 @default.
- W4317754306 cites W1979884219 @default.
- W4317754306 cites W1987889225 @default.
- W4317754306 cites W2001824442 @default.
- W4317754306 cites W2004373505 @default.
- W4317754306 cites W2021568669 @default.
- W4317754306 cites W2022169687 @default.
- W4317754306 cites W2022865481 @default.
- W4317754306 cites W2028005635 @default.
- W4317754306 cites W2045329930 @default.
- W4317754306 cites W2071394556 @default.
- W4317754306 cites W2076101481 @default.
- W4317754306 cites W2082750002 @default.
- W4317754306 cites W2084041260 @default.
- W4317754306 cites W2089193759 @default.
- W4317754306 cites W2104442081 @default.
- W4317754306 cites W2134957777 @default.
- W4317754306 cites W2149099058 @default.
- W4317754306 cites W2169411680 @default.
- W4317754306 cites W2196432988 @default.
- W4317754306 cites W2203779910 @default.
- W4317754306 cites W2241233520 @default.
- W4317754306 cites W2280776066 @default.
- W4317754306 cites W2291717102 @default.
- W4317754306 cites W2372918385 @default.
- W4317754306 cites W2586106532 @default.
- W4317754306 cites W2609828554 @default.
- W4317754306 cites W2762819672 @default.
- W4317754306 cites W2789846009 @default.
- W4317754306 cites W2889745073 @default.
- W4317754306 cites W2949156082 @default.
- W4317754306 cites W2966187638 @default.
- W4317754306 cites W2995020819 @default.
- W4317754306 cites W3021741957 @default.
- W4317754306 cites W3035521088 @default.
- W4317754306 cites W3043818883 @default.
- W4317754306 cites W3089066263 @default.
- W4317754306 cites W3091442840 @default.
- W4317754306 cites W3101616211 @default.
- W4317754306 cites W3102527405 @default.
- W4317754306 cites W3158467226 @default.
- W4317754306 cites W3161981301 @default.
- W4317754306 cites W4286111760 @default.
- W4317754306 doi "https://doi.org/10.1016/j.physletb.2023.137714" @default.
- W4317754306 hasPublicationYear "2023" @default.
- W4317754306 type Work @default.
- W4317754306 citedByCount "1" @default.
- W4317754306 countsByYear W43177543062023 @default.
- W4317754306 crossrefType "journal-article" @default.
- W4317754306 hasAuthorship W4317754306A5004381392 @default.
- W4317754306 hasAuthorship W4317754306A5007397451 @default.
- W4317754306 hasAuthorship W4317754306A5012361308 @default.
- W4317754306 hasAuthorship W4317754306A5059728753 @default.
- W4317754306 hasBestOaLocation W43177543061 @default.
- W4317754306 hasConcept C104416048 @default.
- W4317754306 hasConcept C109214941 @default.
- W4317754306 hasConcept C111472728 @default.
- W4317754306 hasConcept C117137515 @default.
- W4317754306 hasConcept C121332964 @default.
- W4317754306 hasConcept C123579102 @default.
- W4317754306 hasConcept C138885662 @default.
- W4317754306 hasConcept C2292967 @default.
- W4317754306 hasConcept C24890656 @default.
- W4317754306 hasConcept C2781204021 @default.
- W4317754306 hasConcept C3079626 @default.
- W4317754306 hasConcept C37914503 @default.
- W4317754306 hasConcept C3909970 @default.
- W4317754306 hasConcept C42238305 @default.
- W4317754306 hasConcept C7602139 @default.
- W4317754306 hasConcept C84269361 @default.
- W4317754306 hasConceptScore W4317754306C104416048 @default.
- W4317754306 hasConceptScore W4317754306C109214941 @default.
- W4317754306 hasConceptScore W4317754306C111472728 @default.
- W4317754306 hasConceptScore W4317754306C117137515 @default.
- W4317754306 hasConceptScore W4317754306C121332964 @default.
- W4317754306 hasConceptScore W4317754306C123579102 @default.
- W4317754306 hasConceptScore W4317754306C138885662 @default.
- W4317754306 hasConceptScore W4317754306C2292967 @default.
- W4317754306 hasConceptScore W4317754306C24890656 @default.
- W4317754306 hasConceptScore W4317754306C2781204021 @default.
- W4317754306 hasConceptScore W4317754306C3079626 @default.
- W4317754306 hasConceptScore W4317754306C37914503 @default.
- W4317754306 hasConceptScore W4317754306C3909970 @default.
- W4317754306 hasConceptScore W4317754306C42238305 @default.