Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317756851> ?p ?o ?g. }
- W4317756851 endingPage "106983" @default.
- W4317756851 startingPage "106983" @default.
- W4317756851 abstract "Single-vehicle (SV) crash severity model considering spatiotemporal correlations has been extensively investigated, but spatiotemporal interactions have not received sufficient attention. This research is dedicated to propose a superior spatiotemporal interaction correlated random parameters logit approach with heterogeneity in means and variances (STICRP-logit-HMV) for systematically characterizing unobserved heterogeneity, spatiotemporal correlations, and spatiotemporal interactions. Four flexible interaction formulations are developed to uncover the spatiotemporal interactions, including linear structure, Kronecker product, mixture-2 model, and mixture-5 model. Four candidate approaches-random parameters logit (RP-logit), RP-logit with heterogeneity in means and variances (RP-logit-HMV), correlated RP-logit-HMV (CRP-logit-HMV), and spatiotemporal CRP-logit-HMV (STCRP-logit-HMV)-are also established and compared with the proposed model. SV crash observations in Shandong Province, China, are employed to calibrate regression parameters. The model comparison results show that (1) the performance of the RP-logit-HMV model outperforms the RP-logit model, implying that capturing heterogeneity in the means and variances can strengthen model fit; (2) the CRP-logit-HMV model and the RP-logit-HMV model are comparable; (3) the STCRP-logit-HMV model outperforms the CRP-logit-HMV model, implying that addressing the spatiotemporal crash mechanisms is beneficial to the overall fitting of the crash model; (4) the STICRP-logit-HMV model performs better than the STCRP-logit-HMV model and this finding remains stable across different interaction formulations, indicating that comprehensively reflecting the spatiotemporal correlations and their interactions is a promising approach to model SV crashes. Among the four interaction models, the STICRP-logit-HMV model with mixture-5 component maintains the best fit, which is a recommended approach to model crash severity. The regression coefficients for young driver, male driver, and non-dry road surface are random across observations, suggesting that the influence of these factors on SV crash severity maintains significant heterogeneity effects. The research results provide transportation professionals with a superior statistical framework for diagnosing crash severity, which is beneficial for improving traffic safety." @default.
- W4317756851 created "2023-01-23" @default.
- W4317756851 creator A5024289381 @default.
- W4317756851 creator A5066173871 @default.
- W4317756851 date "2023-04-01" @default.
- W4317756851 modified "2023-10-10" @default.
- W4317756851 title "Modelling injury severity in single-vehicle crashes using full Bayesian random parameters multinomial approach" @default.
- W4317756851 cites W1978210085 @default.
- W4317756851 cites W1988019925 @default.
- W4317756851 cites W1994080303 @default.
- W4317756851 cites W2013732826 @default.
- W4317756851 cites W2020549527 @default.
- W4317756851 cites W2025200414 @default.
- W4317756851 cites W2038259312 @default.
- W4317756851 cites W2042744865 @default.
- W4317756851 cites W2051228397 @default.
- W4317756851 cites W2057765075 @default.
- W4317756851 cites W2062508248 @default.
- W4317756851 cites W2072821133 @default.
- W4317756851 cites W2076505509 @default.
- W4317756851 cites W2082148146 @default.
- W4317756851 cites W2107095871 @default.
- W4317756851 cites W2122362215 @default.
- W4317756851 cites W2132735659 @default.
- W4317756851 cites W2136625176 @default.
- W4317756851 cites W2155671015 @default.
- W4317756851 cites W2157730700 @default.
- W4317756851 cites W2160170970 @default.
- W4317756851 cites W2179490176 @default.
- W4317756851 cites W2293396486 @default.
- W4317756851 cites W2409399929 @default.
- W4317756851 cites W2412483528 @default.
- W4317756851 cites W2769153038 @default.
- W4317756851 cites W2783525687 @default.
- W4317756851 cites W2790297009 @default.
- W4317756851 cites W2790921206 @default.
- W4317756851 cites W2792974760 @default.
- W4317756851 cites W2800779943 @default.
- W4317756851 cites W2899731239 @default.
- W4317756851 cites W2901538103 @default.
- W4317756851 cites W2901672822 @default.
- W4317756851 cites W2904191813 @default.
- W4317756851 cites W2909077893 @default.
- W4317756851 cites W2912198132 @default.
- W4317756851 cites W2920056159 @default.
- W4317756851 cites W2943827903 @default.
- W4317756851 cites W2952641640 @default.
- W4317756851 cites W2963830620 @default.
- W4317756851 cites W2969194299 @default.
- W4317756851 cites W2982119822 @default.
- W4317756851 cites W2984350486 @default.
- W4317756851 cites W3006621063 @default.
- W4317756851 cites W3034459035 @default.
- W4317756851 cites W3039738118 @default.
- W4317756851 cites W3042145723 @default.
- W4317756851 cites W3045573666 @default.
- W4317756851 cites W3082956344 @default.
- W4317756851 cites W3084704464 @default.
- W4317756851 cites W3099420238 @default.
- W4317756851 cites W3108885278 @default.
- W4317756851 cites W3115963242 @default.
- W4317756851 cites W3119429672 @default.
- W4317756851 cites W3132806060 @default.
- W4317756851 cites W3158063582 @default.
- W4317756851 cites W3163174872 @default.
- W4317756851 cites W3173292609 @default.
- W4317756851 cites W3176614408 @default.
- W4317756851 cites W3189096335 @default.
- W4317756851 cites W3196352109 @default.
- W4317756851 cites W3196578351 @default.
- W4317756851 cites W3208361390 @default.
- W4317756851 cites W3209460372 @default.
- W4317756851 cites W4200297383 @default.
- W4317756851 cites W4200554117 @default.
- W4317756851 cites W4213421943 @default.
- W4317756851 cites W4223601138 @default.
- W4317756851 cites W4255113605 @default.
- W4317756851 cites W4282840761 @default.
- W4317756851 cites W4296218594 @default.
- W4317756851 doi "https://doi.org/10.1016/j.aap.2023.106983" @default.
- W4317756851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36696745" @default.
- W4317756851 hasPublicationYear "2023" @default.
- W4317756851 type Work @default.
- W4317756851 citedByCount "3" @default.
- W4317756851 countsByYear W43177568512023 @default.
- W4317756851 crossrefType "journal-article" @default.
- W4317756851 hasAuthorship W4317756851A5024289381 @default.
- W4317756851 hasAuthorship W4317756851A5066173871 @default.
- W4317756851 hasConcept C105795698 @default.
- W4317756851 hasConcept C117568660 @default.
- W4317756851 hasConcept C140331021 @default.
- W4317756851 hasConcept C149782125 @default.
- W4317756851 hasConcept C151956035 @default.
- W4317756851 hasConcept C33923547 @default.
- W4317756851 hasConcept C41008148 @default.
- W4317756851 hasConcept C95057490 @default.
- W4317756851 hasConceptScore W4317756851C105795698 @default.
- W4317756851 hasConceptScore W4317756851C117568660 @default.