Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317761489> ?p ?o ?g. }
- W4317761489 endingPage "15" @default.
- W4317761489 startingPage "1" @default.
- W4317761489 abstract "The nonlinear conjugate gradient (NLCG) algorithm is one of the popular linearized methods used to solve the frequency-domain electromagnetic (EM) geophysical inverse problem. During NLCG iterations, the model gradient guides the searching direction while the line-search algorithm determines the step length of each iteration. Normally, the line search requires solving the corresponding forward problem a few times. Since line search is usually computationally inefficient, we introduce the adaptive gradient descent (AGD) algorithm to accelerate solving the frequency-domain EM inverse problem within the linearized framework. The AGD algorithm is a variant of the classical gradient descent method and has been well-developed and widely used in deep learning. Rather than the time-consuming line search, its core idea is to algebraically manipulate the cumulative gradients and updates of the model from previous iterations to estimate the model parameter variables at the current iteration. For the inversion of magnetotelluric (MT) data, we here designed and implemented a framework using the AGD algorithm combined with the cool-down scheme to tune the regularization parameter. To improve the convergence performance of the AGD algorithm [specifying to Adam and root-mean-square propagation (RMSProp)], we proposed a tolerance strategy which has been tested numerically. To optimize the global learning rate, we carried out some comparative trials in the proposed inversion framework. The inverted results of synthetic and real-world data showed that both the AGD algorithms (Adam and RMSProp) can recover comparable results and save more than a third of CPU time compared with the NLCG algorithm." @default.
- W4317761489 created "2023-01-23" @default.
- W4317761489 creator A5011208510 @default.
- W4317761489 creator A5023261296 @default.
- W4317761489 creator A5044393709 @default.
- W4317761489 creator A5044544424 @default.
- W4317761489 creator A5045337789 @default.
- W4317761489 creator A5077112485 @default.
- W4317761489 date "2023-01-01" @default.
- W4317761489 modified "2023-10-15" @default.
- W4317761489 title "Solving Electromagnetic Inverse Problem Using Adaptive Gradient Descent Algorithm" @default.
- W4317761489 cites W1790833911 @default.
- W4317761489 cites W1969123802 @default.
- W4317761489 cites W1990381576 @default.
- W4317761489 cites W1994616650 @default.
- W4317761489 cites W2013515631 @default.
- W4317761489 cites W2015534237 @default.
- W4317761489 cites W2016043834 @default.
- W4317761489 cites W2033262138 @default.
- W4317761489 cites W2034978228 @default.
- W4317761489 cites W2041314276 @default.
- W4317761489 cites W2041989170 @default.
- W4317761489 cites W2057592393 @default.
- W4317761489 cites W2073581972 @default.
- W4317761489 cites W2090351291 @default.
- W4317761489 cites W2106407799 @default.
- W4317761489 cites W2106656281 @default.
- W4317761489 cites W2108064160 @default.
- W4317761489 cites W2113979318 @default.
- W4317761489 cites W2115180751 @default.
- W4317761489 cites W2119969303 @default.
- W4317761489 cites W2120482091 @default.
- W4317761489 cites W2121703172 @default.
- W4317761489 cites W2124048760 @default.
- W4317761489 cites W2124877703 @default.
- W4317761489 cites W2126883357 @default.
- W4317761489 cites W2133454905 @default.
- W4317761489 cites W2148357326 @default.
- W4317761489 cites W2490973202 @default.
- W4317761489 cites W2529422904 @default.
- W4317761489 cites W2541603269 @default.
- W4317761489 cites W2771169143 @default.
- W4317761489 cites W2924587861 @default.
- W4317761489 cites W2952524552 @default.
- W4317761489 cites W2983807332 @default.
- W4317761489 cites W2996192756 @default.
- W4317761489 cites W3008517453 @default.
- W4317761489 cites W3090377106 @default.
- W4317761489 cites W3110972461 @default.
- W4317761489 cites W3111357769 @default.
- W4317761489 doi "https://doi.org/10.1109/tgrs.2023.3239106" @default.
- W4317761489 hasPublicationYear "2023" @default.
- W4317761489 type Work @default.
- W4317761489 citedByCount "0" @default.
- W4317761489 crossrefType "journal-article" @default.
- W4317761489 hasAuthorship W4317761489A5011208510 @default.
- W4317761489 hasAuthorship W4317761489A5023261296 @default.
- W4317761489 hasAuthorship W4317761489A5044393709 @default.
- W4317761489 hasAuthorship W4317761489A5044544424 @default.
- W4317761489 hasAuthorship W4317761489A5045337789 @default.
- W4317761489 hasAuthorship W4317761489A5077112485 @default.
- W4317761489 hasConcept C109007969 @default.
- W4317761489 hasConcept C11413529 @default.
- W4317761489 hasConcept C116149140 @default.
- W4317761489 hasConcept C126255220 @default.
- W4317761489 hasConcept C134306372 @default.
- W4317761489 hasConcept C135252773 @default.
- W4317761489 hasConcept C151730666 @default.
- W4317761489 hasConcept C153258448 @default.
- W4317761489 hasConcept C154945302 @default.
- W4317761489 hasConcept C178635117 @default.
- W4317761489 hasConcept C1893757 @default.
- W4317761489 hasConcept C206688291 @default.
- W4317761489 hasConcept C207467116 @default.
- W4317761489 hasConcept C2524010 @default.
- W4317761489 hasConcept C26362088 @default.
- W4317761489 hasConcept C26517878 @default.
- W4317761489 hasConcept C33923547 @default.
- W4317761489 hasConcept C38652104 @default.
- W4317761489 hasConcept C41008148 @default.
- W4317761489 hasConcept C50644808 @default.
- W4317761489 hasConcept C57869625 @default.
- W4317761489 hasConcept C81184566 @default.
- W4317761489 hasConcept C85522705 @default.
- W4317761489 hasConcept C86803240 @default.
- W4317761489 hasConceptScore W4317761489C109007969 @default.
- W4317761489 hasConceptScore W4317761489C11413529 @default.
- W4317761489 hasConceptScore W4317761489C116149140 @default.
- W4317761489 hasConceptScore W4317761489C126255220 @default.
- W4317761489 hasConceptScore W4317761489C134306372 @default.
- W4317761489 hasConceptScore W4317761489C135252773 @default.
- W4317761489 hasConceptScore W4317761489C151730666 @default.
- W4317761489 hasConceptScore W4317761489C153258448 @default.
- W4317761489 hasConceptScore W4317761489C154945302 @default.
- W4317761489 hasConceptScore W4317761489C178635117 @default.
- W4317761489 hasConceptScore W4317761489C1893757 @default.
- W4317761489 hasConceptScore W4317761489C206688291 @default.
- W4317761489 hasConceptScore W4317761489C207467116 @default.