Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317778891> ?p ?o ?g. }
- W4317778891 endingPage "210" @default.
- W4317778891 startingPage "199" @default.
- W4317778891 abstract "How do humans and other animals learn new tasks? A wave of brain recording studies has investigated how neural representations change during task learning, with a focus on how tasks can be acquired and coded in ways that minimise mutual interference. We review recent work that has explored the geometry and dimensionality of neural task representations in neocortex, and computational models that have exploited these findings to understand how the brain may partition knowledge between tasks. We discuss how ideas from machine learning, including those that combine supervised and unsupervised learning, are helping neuroscientists understand how natural tasks are learned and coded in biological brains." @default.
- W4317778891 created "2023-01-24" @default.
- W4317778891 creator A5011428379 @default.
- W4317778891 creator A5031878516 @default.
- W4317778891 creator A5084904199 @default.
- W4317778891 date "2023-03-01" @default.
- W4317778891 modified "2023-10-14" @default.
- W4317778891 title "Continual task learning in natural and artificial agents" @default.
- W4317778891 cites W1976932745 @default.
- W4317778891 cites W1979019425 @default.
- W4317778891 cites W1993521400 @default.
- W4317778891 cites W2000998192 @default.
- W4317778891 cites W2016723506 @default.
- W4317778891 cites W2033708181 @default.
- W4317778891 cites W2035090004 @default.
- W4317778891 cites W2036899314 @default.
- W4317778891 cites W2039611165 @default.
- W4317778891 cites W2047057213 @default.
- W4317778891 cites W2047125104 @default.
- W4317778891 cites W2049223899 @default.
- W4317778891 cites W2060277733 @default.
- W4317778891 cites W2070537708 @default.
- W4317778891 cites W2082607610 @default.
- W4317778891 cites W2082622165 @default.
- W4317778891 cites W2093423290 @default.
- W4317778891 cites W2105466163 @default.
- W4317778891 cites W2110387210 @default.
- W4317778891 cites W2116640775 @default.
- W4317778891 cites W2122916964 @default.
- W4317778891 cites W2122917065 @default.
- W4317778891 cites W2125495031 @default.
- W4317778891 cites W2134927309 @default.
- W4317778891 cites W2135955567 @default.
- W4317778891 cites W2138210540 @default.
- W4317778891 cites W2145339207 @default.
- W4317778891 cites W2151137320 @default.
- W4317778891 cites W2166200712 @default.
- W4317778891 cites W2198030175 @default.
- W4317778891 cites W2255581062 @default.
- W4317778891 cites W2424347275 @default.
- W4317778891 cites W2432567885 @default.
- W4317778891 cites W2507425266 @default.
- W4317778891 cites W2560647685 @default.
- W4317778891 cites W2581342503 @default.
- W4317778891 cites W2745165449 @default.
- W4317778891 cites W2757867238 @default.
- W4317778891 cites W2761368411 @default.
- W4317778891 cites W2787295326 @default.
- W4317778891 cites W2788388592 @default.
- W4317778891 cites W2854445389 @default.
- W4317778891 cites W2896084542 @default.
- W4317778891 cites W2898365215 @default.
- W4317778891 cites W2904643767 @default.
- W4317778891 cites W2907047316 @default.
- W4317778891 cites W2955321733 @default.
- W4317778891 cites W2967821093 @default.
- W4317778891 cites W2969548943 @default.
- W4317778891 cites W2974979868 @default.
- W4317778891 cites W2994987564 @default.
- W4317778891 cites W3009744230 @default.
- W4317778891 cites W3017746321 @default.
- W4317778891 cites W3081847250 @default.
- W4317778891 cites W3096511324 @default.
- W4317778891 cites W3097816393 @default.
- W4317778891 cites W3100035092 @default.
- W4317778891 cites W3107694517 @default.
- W4317778891 cites W3132258178 @default.
- W4317778891 cites W3143658323 @default.
- W4317778891 cites W3161865842 @default.
- W4317778891 cites W3178228406 @default.
- W4317778891 cites W4211115742 @default.
- W4317778891 cites W4220731685 @default.
- W4317778891 cites W4238879677 @default.
- W4317778891 cites W4281663412 @default.
- W4317778891 cites W4289688858 @default.
- W4317778891 cites W4290839803 @default.
- W4317778891 cites W4312156980 @default.
- W4317778891 doi "https://doi.org/10.1016/j.tins.2022.12.006" @default.
- W4317778891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36682991" @default.
- W4317778891 hasPublicationYear "2023" @default.
- W4317778891 type Work @default.
- W4317778891 citedByCount "2" @default.
- W4317778891 countsByYear W43177788912023 @default.
- W4317778891 crossrefType "journal-article" @default.
- W4317778891 hasAuthorship W4317778891A5011428379 @default.
- W4317778891 hasAuthorship W4317778891A5031878516 @default.
- W4317778891 hasAuthorship W4317778891A5084904199 @default.
- W4317778891 hasBestOaLocation W43177788911 @default.
- W4317778891 hasConcept C119857082 @default.
- W4317778891 hasConcept C120665830 @default.
- W4317778891 hasConcept C121332964 @default.
- W4317778891 hasConcept C154945302 @default.
- W4317778891 hasConcept C15744967 @default.
- W4317778891 hasConcept C162324750 @default.
- W4317778891 hasConcept C187736073 @default.
- W4317778891 hasConcept C188147891 @default.
- W4317778891 hasConcept C192209626 @default.
- W4317778891 hasConcept C2780451532 @default.