Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317778941> ?p ?o ?g. }
- W4317778941 endingPage "822" @default.
- W4317778941 startingPage "807" @default.
- W4317778941 abstract "The complexity of the upper gastrointestinal (UGI) multidisciplinary team (MDT) is continually growing, leading to rising clinician workload, time pressures, and demands. This increases heterogeneity or 'noise' within decision-making for patients with oesophageal cancer (OC) and may lead to inconsistent treatment decisions. In recent decades, the application of artificial intelligence (AI) and more specifically the branch of machine learning (ML) has led to a paradigm shift in the perceived utility of statistical modelling within healthcare. Within oesophageal cancer (OC) care, ML techniques have already been applied with early success to the analyses of histological samples and radiology imaging; however, it has not yet been applied to the MDT itself where such models are likely to benefit from incorporating information-rich, diverse datasets to increase predictive model accuracy.This review discusses the current role the MDT plays in modern UGI cancer care as well as the utilisation of ML techniques to date using histological and radiological data to predict treatment response, prognostication, nodal disease evaluation, and even resectability within OC.The review finds that an emerging body of evidence is growing in support of ML tools within multiple domains relevant to decision-making within OC including automated histological analysis and radiomics. However, to date, no specific application has been directed to the MDT itself which routinely assimilates this information.The authors feel the UGI MDT offers an information-rich, diverse array of data from which ML offers the potential to standardise, automate, and produce more consistent, data-driven MDT decisions." @default.
- W4317778941 created "2023-01-24" @default.
- W4317778941 creator A5008228158 @default.
- W4317778941 creator A5028860559 @default.
- W4317778941 creator A5088607583 @default.
- W4317778941 creator A5090442030 @default.
- W4317778941 date "2023-01-23" @default.
- W4317778941 modified "2023-10-18" @default.
- W4317778941 title "The Oesophageal Cancer Multidisciplinary Team: Can Machine Learning Assist Decision-Making?" @default.
- W4317778941 cites W1922694287 @default.
- W4317778941 cites W1964957583 @default.
- W4317778941 cites W1970903962 @default.
- W4317778941 cites W1976733950 @default.
- W4317778941 cites W2023152838 @default.
- W4317778941 cites W2026615468 @default.
- W4317778941 cites W2034400748 @default.
- W4317778941 cites W2047872723 @default.
- W4317778941 cites W2052147779 @default.
- W4317778941 cites W2065476437 @default.
- W4317778941 cites W2077531642 @default.
- W4317778941 cites W2085279039 @default.
- W4317778941 cites W2089584208 @default.
- W4317778941 cites W2103243046 @default.
- W4317778941 cites W2115072149 @default.
- W4317778941 cites W2119387367 @default.
- W4317778941 cites W2124149371 @default.
- W4317778941 cites W2149962059 @default.
- W4317778941 cites W2155104309 @default.
- W4317778941 cites W2205275114 @default.
- W4317778941 cites W2487587869 @default.
- W4317778941 cites W2518870876 @default.
- W4317778941 cites W2531771890 @default.
- W4317778941 cites W2531910530 @default.
- W4317778941 cites W2559246370 @default.
- W4317778941 cites W2751723768 @default.
- W4317778941 cites W2759258394 @default.
- W4317778941 cites W2767233816 @default.
- W4317778941 cites W2791876363 @default.
- W4317778941 cites W2801433791 @default.
- W4317778941 cites W2809526825 @default.
- W4317778941 cites W2885949711 @default.
- W4317778941 cites W2909812766 @default.
- W4317778941 cites W2913702106 @default.
- W4317778941 cites W2938774982 @default.
- W4317778941 cites W2946671629 @default.
- W4317778941 cites W2947546865 @default.
- W4317778941 cites W2951780999 @default.
- W4317778941 cites W2963008443 @default.
- W4317778941 cites W2972165905 @default.
- W4317778941 cites W2980754348 @default.
- W4317778941 cites W2981685531 @default.
- W4317778941 cites W2991430586 @default.
- W4317778941 cites W2991639299 @default.
- W4317778941 cites W3006036530 @default.
- W4317778941 cites W3006462130 @default.
- W4317778941 cites W3008558294 @default.
- W4317778941 cites W3039414903 @default.
- W4317778941 cites W3047632364 @default.
- W4317778941 cites W3048802680 @default.
- W4317778941 cites W3100084586 @default.
- W4317778941 cites W3108265552 @default.
- W4317778941 cites W3132080514 @default.
- W4317778941 cites W3136823548 @default.
- W4317778941 cites W3161913016 @default.
- W4317778941 cites W3170831929 @default.
- W4317778941 cites W3185817694 @default.
- W4317778941 cites W3197594600 @default.
- W4317778941 cites W3200506115 @default.
- W4317778941 cites W3209901185 @default.
- W4317778941 cites W4210685329 @default.
- W4317778941 cites W4213002999 @default.
- W4317778941 cites W4213440543 @default.
- W4317778941 cites W4225712181 @default.
- W4317778941 doi "https://doi.org/10.1007/s11605-022-05575-8" @default.
- W4317778941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36689150" @default.
- W4317778941 hasPublicationYear "2023" @default.
- W4317778941 type Work @default.
- W4317778941 citedByCount "1" @default.
- W4317778941 countsByYear W43177789412023 @default.
- W4317778941 crossrefType "journal-article" @default.
- W4317778941 hasAuthorship W4317778941A5008228158 @default.
- W4317778941 hasAuthorship W4317778941A5028860559 @default.
- W4317778941 hasAuthorship W4317778941A5088607583 @default.
- W4317778941 hasAuthorship W4317778941A5090442030 @default.
- W4317778941 hasBestOaLocation W43177789411 @default.
- W4317778941 hasConcept C111919701 @default.
- W4317778941 hasConcept C119857082 @default.
- W4317778941 hasConcept C121608353 @default.
- W4317778941 hasConcept C126322002 @default.
- W4317778941 hasConcept C126838900 @default.
- W4317778941 hasConcept C142724271 @default.
- W4317778941 hasConcept C144024400 @default.
- W4317778941 hasConcept C154945302 @default.
- W4317778941 hasConcept C159110408 @default.
- W4317778941 hasConcept C160735492 @default.
- W4317778941 hasConcept C162324750 @default.
- W4317778941 hasConcept C177713679 @default.
- W4317778941 hasConcept C19527891 @default.