Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317788463> ?p ?o ?g. }
- W4317788463 abstract "To investigate the generalizability of transfer learning (TL) of automated tumor segmentation from cervical cancers toward a universal model for cervical and uterine malignancies in diffusion-weighted magnetic resonance imaging (DWI).In this retrospective multicenter study, we analyzed pelvic DWI data from 169 and 320 patients with cervical and uterine malignancies and divided them into the training (144 and 256) and testing (25 and 64) datasets, respectively. A pretrained model was established using DeepLab V3 + from the cervical cancer dataset, followed by TL experiments adjusting the training data sizes and fine-tuning layers. The model performance was evaluated using the dice similarity coefficient (DSC).In predicting tumor segmentation for all cervical and uterine malignancies, TL models improved the DSCs from the pretrained cervical model (DSC 0.43) when adding 5, 13, 26, and 51 uterine cases for training (DSC improved from 0.57, 0.62, 0.68, 0.70, p < 0.001). Following the crossover at adding 128 cases (DSC 0.71), the model trained by combining data from adding all the 256 patients exhibited the highest DSCs for the combined cervical and uterine datasets (DSC 0.81) and cervical only dataset (DSC 0.91).TL may improve the generalizability of automated tumor segmentation of DWI from a specific cancer type toward multiple types of uterine malignancies especially in limited case numbers." @default.
- W4317788463 created "2023-01-24" @default.
- W4317788463 creator A5018041335 @default.
- W4317788463 creator A5024456732 @default.
- W4317788463 creator A5025058854 @default.
- W4317788463 creator A5040924649 @default.
- W4317788463 creator A5051331130 @default.
- W4317788463 creator A5053430188 @default.
- W4317788463 creator A5060644274 @default.
- W4317788463 creator A5065192787 @default.
- W4317788463 creator A5081205617 @default.
- W4317788463 creator A5082579363 @default.
- W4317788463 creator A5086587196 @default.
- W4317788463 date "2023-01-24" @default.
- W4317788463 modified "2023-10-18" @default.
- W4317788463 title "Generalizable transfer learning of automated tumor segmentation from cervical cancers toward a universal model for uterine malignancies in diffusion-weighted MRI" @default.
- W4317788463 cites W1909740415 @default.
- W4317788463 cites W2174661749 @default.
- W4317788463 cites W2533800772 @default.
- W4317788463 cites W2610796455 @default.
- W4317788463 cites W2726102591 @default.
- W4317788463 cites W2767128594 @default.
- W4317788463 cites W2792466349 @default.
- W4317788463 cites W2792806930 @default.
- W4317788463 cites W2795688948 @default.
- W4317788463 cites W2805989241 @default.
- W4317788463 cites W2883907841 @default.
- W4317788463 cites W2886857600 @default.
- W4317788463 cites W2899951262 @default.
- W4317788463 cites W2945839551 @default.
- W4317788463 cites W2985140510 @default.
- W4317788463 cites W3033461544 @default.
- W4317788463 cites W3034865896 @default.
- W4317788463 cites W3091437736 @default.
- W4317788463 cites W3100715778 @default.
- W4317788463 cites W3103261259 @default.
- W4317788463 cites W3122892426 @default.
- W4317788463 cites W3155683065 @default.
- W4317788463 cites W3179944039 @default.
- W4317788463 cites W4283027830 @default.
- W4317788463 doi "https://doi.org/10.1186/s13244-022-01356-8" @default.
- W4317788463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36690870" @default.
- W4317788463 hasPublicationYear "2023" @default.
- W4317788463 type Work @default.
- W4317788463 citedByCount "1" @default.
- W4317788463 countsByYear W43177884632023 @default.
- W4317788463 crossrefType "journal-article" @default.
- W4317788463 hasAuthorship W4317788463A5018041335 @default.
- W4317788463 hasAuthorship W4317788463A5024456732 @default.
- W4317788463 hasAuthorship W4317788463A5025058854 @default.
- W4317788463 hasAuthorship W4317788463A5040924649 @default.
- W4317788463 hasAuthorship W4317788463A5051331130 @default.
- W4317788463 hasAuthorship W4317788463A5053430188 @default.
- W4317788463 hasAuthorship W4317788463A5060644274 @default.
- W4317788463 hasAuthorship W4317788463A5065192787 @default.
- W4317788463 hasAuthorship W4317788463A5081205617 @default.
- W4317788463 hasAuthorship W4317788463A5082579363 @default.
- W4317788463 hasAuthorship W4317788463A5086587196 @default.
- W4317788463 hasBestOaLocation W43177884631 @default.
- W4317788463 hasConcept C105795698 @default.
- W4317788463 hasConcept C121608353 @default.
- W4317788463 hasConcept C126322002 @default.
- W4317788463 hasConcept C126838900 @default.
- W4317788463 hasConcept C143409427 @default.
- W4317788463 hasConcept C154945302 @default.
- W4317788463 hasConcept C27158222 @default.
- W4317788463 hasConcept C2778220009 @default.
- W4317788463 hasConcept C33923547 @default.
- W4317788463 hasConcept C41008148 @default.
- W4317788463 hasConcept C71924100 @default.
- W4317788463 hasConcept C89600930 @default.
- W4317788463 hasConceptScore W4317788463C105795698 @default.
- W4317788463 hasConceptScore W4317788463C121608353 @default.
- W4317788463 hasConceptScore W4317788463C126322002 @default.
- W4317788463 hasConceptScore W4317788463C126838900 @default.
- W4317788463 hasConceptScore W4317788463C143409427 @default.
- W4317788463 hasConceptScore W4317788463C154945302 @default.
- W4317788463 hasConceptScore W4317788463C27158222 @default.
- W4317788463 hasConceptScore W4317788463C2778220009 @default.
- W4317788463 hasConceptScore W4317788463C33923547 @default.
- W4317788463 hasConceptScore W4317788463C41008148 @default.
- W4317788463 hasConceptScore W4317788463C71924100 @default.
- W4317788463 hasConceptScore W4317788463C89600930 @default.
- W4317788463 hasFunder F4320313619 @default.
- W4317788463 hasFunder F4320322795 @default.
- W4317788463 hasIssue "1" @default.
- W4317788463 hasLocation W43177884631 @default.
- W4317788463 hasLocation W43177884632 @default.
- W4317788463 hasLocation W43177884633 @default.
- W4317788463 hasOpenAccess W4317788463 @default.
- W4317788463 hasPrimaryLocation W43177884631 @default.
- W4317788463 hasRelatedWork W1998885523 @default.
- W4317788463 hasRelatedWork W2049214470 @default.
- W4317788463 hasRelatedWork W2081064592 @default.
- W4317788463 hasRelatedWork W2384708512 @default.
- W4317788463 hasRelatedWork W2385052163 @default.
- W4317788463 hasRelatedWork W3079369159 @default.
- W4317788463 hasRelatedWork W3138005423 @default.
- W4317788463 hasRelatedWork W3173463012 @default.
- W4317788463 hasRelatedWork W4200228306 @default.