Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317792380> ?p ?o ?g. }
- W4317792380 abstract "Gaussian processes, known to have versatile uses in several fields across engineering, science, economics, show important advantages to several alternative approaches while controlling model complexity. However, the use of this family of models is hindered for inputs that are high dimensional as well as large sample sizes due to the intractability of the likelihood function, and the growth of the variance covariance matrix. This article investigates state-of-art solutions to these challenges according classifying them into categories. The goal is to select several algorithms covering each category and perform empirical experiments to compare their performances on the same set of test functions. Our preliminary results focus on deterministic implementations of a set of selected approaches. The results of the experiments may serve as a guidance to future readers who want to study and use Gaussian process in problems with high dimensions and big data sets." @default.
- W4317792380 created "2023-01-24" @default.
- W4317792380 creator A5000310523 @default.
- W4317792380 creator A5025811314 @default.
- W4317792380 creator A5049158387 @default.
- W4317792380 date "2022-12-11" @default.
- W4317792380 modified "2023-10-18" @default.
- W4317792380 title "Gaussian Processes for High-Dimensional, Large Data Sets: A Review" @default.
- W4317792380 cites W1480330138 @default.
- W4317792380 cites W1970662304 @default.
- W4317792380 cites W2010669260 @default.
- W4317792380 cites W2042683698 @default.
- W4317792380 cites W2053186076 @default.
- W4317792380 cites W2071168995 @default.
- W4317792380 cites W2084260228 @default.
- W4317792380 cites W2098964861 @default.
- W4317792380 cites W2107871762 @default.
- W4317792380 cites W2116581043 @default.
- W4317792380 cites W2135046866 @default.
- W4317792380 cites W2138217758 @default.
- W4317792380 cites W2153491803 @default.
- W4317792380 cites W2154560360 @default.
- W4317792380 cites W2240112237 @default.
- W4317792380 cites W2743299957 @default.
- W4317792380 cites W2743845810 @default.
- W4317792380 cites W3000508506 @default.
- W4317792380 cites W3003338277 @default.
- W4317792380 cites W3011249019 @default.
- W4317792380 cites W3046086400 @default.
- W4317792380 cites W3098834468 @default.
- W4317792380 cites W3103643510 @default.
- W4317792380 cites W3104950855 @default.
- W4317792380 cites W3151172924 @default.
- W4317792380 cites W4236113971 @default.
- W4317792380 doi "https://doi.org/10.1109/wsc57314.2022.10015416" @default.
- W4317792380 hasPublicationYear "2022" @default.
- W4317792380 type Work @default.
- W4317792380 citedByCount "0" @default.
- W4317792380 crossrefType "proceedings-article" @default.
- W4317792380 hasAuthorship W4317792380A5000310523 @default.
- W4317792380 hasAuthorship W4317792380A5025811314 @default.
- W4317792380 hasAuthorship W4317792380A5049158387 @default.
- W4317792380 hasConcept C105795698 @default.
- W4317792380 hasConcept C111919701 @default.
- W4317792380 hasConcept C11413529 @default.
- W4317792380 hasConcept C119857082 @default.
- W4317792380 hasConcept C120665830 @default.
- W4317792380 hasConcept C121332964 @default.
- W4317792380 hasConcept C121955636 @default.
- W4317792380 hasConcept C124101348 @default.
- W4317792380 hasConcept C14036430 @default.
- W4317792380 hasConcept C144133560 @default.
- W4317792380 hasConcept C154945302 @default.
- W4317792380 hasConcept C163716315 @default.
- W4317792380 hasConcept C177264268 @default.
- W4317792380 hasConcept C178650346 @default.
- W4317792380 hasConcept C185142706 @default.
- W4317792380 hasConcept C192209626 @default.
- W4317792380 hasConcept C196083921 @default.
- W4317792380 hasConcept C199360897 @default.
- W4317792380 hasConcept C26713055 @default.
- W4317792380 hasConcept C33923547 @default.
- W4317792380 hasConcept C41008148 @default.
- W4317792380 hasConcept C61326573 @default.
- W4317792380 hasConcept C62520636 @default.
- W4317792380 hasConcept C78458016 @default.
- W4317792380 hasConcept C80444323 @default.
- W4317792380 hasConcept C86803240 @default.
- W4317792380 hasConcept C98045186 @default.
- W4317792380 hasConceptScore W4317792380C105795698 @default.
- W4317792380 hasConceptScore W4317792380C111919701 @default.
- W4317792380 hasConceptScore W4317792380C11413529 @default.
- W4317792380 hasConceptScore W4317792380C119857082 @default.
- W4317792380 hasConceptScore W4317792380C120665830 @default.
- W4317792380 hasConceptScore W4317792380C121332964 @default.
- W4317792380 hasConceptScore W4317792380C121955636 @default.
- W4317792380 hasConceptScore W4317792380C124101348 @default.
- W4317792380 hasConceptScore W4317792380C14036430 @default.
- W4317792380 hasConceptScore W4317792380C144133560 @default.
- W4317792380 hasConceptScore W4317792380C154945302 @default.
- W4317792380 hasConceptScore W4317792380C163716315 @default.
- W4317792380 hasConceptScore W4317792380C177264268 @default.
- W4317792380 hasConceptScore W4317792380C178650346 @default.
- W4317792380 hasConceptScore W4317792380C185142706 @default.
- W4317792380 hasConceptScore W4317792380C192209626 @default.
- W4317792380 hasConceptScore W4317792380C196083921 @default.
- W4317792380 hasConceptScore W4317792380C199360897 @default.
- W4317792380 hasConceptScore W4317792380C26713055 @default.
- W4317792380 hasConceptScore W4317792380C33923547 @default.
- W4317792380 hasConceptScore W4317792380C41008148 @default.
- W4317792380 hasConceptScore W4317792380C61326573 @default.
- W4317792380 hasConceptScore W4317792380C62520636 @default.
- W4317792380 hasConceptScore W4317792380C78458016 @default.
- W4317792380 hasConceptScore W4317792380C80444323 @default.
- W4317792380 hasConceptScore W4317792380C86803240 @default.
- W4317792380 hasConceptScore W4317792380C98045186 @default.
- W4317792380 hasLocation W43177923801 @default.
- W4317792380 hasOpenAccess W4317792380 @default.
- W4317792380 hasPrimaryLocation W43177923801 @default.
- W4317792380 hasRelatedWork W1528241179 @default.