Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317796670> ?p ?o ?g. }
- W4317796670 abstract "Abstract Geological Carbon Sequestration (GCS) in deep geological formations, like saline aquifers and depleted oil and gas reservoirs, brings enormous potential for large-scale storage of carbon dioxide (CO2). The successful implementation of GCS requires a comprehensive risk assessment of the confinement of plumes at each potential storage site. The accurate prediction of the flow, geochemical, and geomechanical responses of the formation is essential for the management of GCS in long-term operations because excessive pressure buildup due to injection can potentially induce fracturing of the cap-rock, or activate pre-existing faults, through which fluid can leak. In this study, we build a Deep Learning (DL) workflow to effectively infer the storage potential of CO2 in deep saline aquifers. Specifically, a reservoir model is built to simulate the process of CO2 injection into deep saline aquifers, which considers the coupled phenomenon of flow and hydromechanics. Further, the reservoir model was sampled to account for a wide range of petro-physical, geological, and operational parameters. These samples generated a massive physics-informed simulation database (about 1500 simulated data points) that provides training data for the DL workflow. The ranges of varied parameters were obtained from an extensive literature survey. The DL workflow consists of Fourier Neural Operator (FNO) to take the input of the parameterized variables used in the simulation database and jointly predict the temporal-spatial responses of pressure and CO2 saturation plumes at different periods. Average Absolute Percentage Error (AAPE) and coefficient of determination (R2), Structural similarity index (SSIM), and Peak Signal to Noise Ratio (PSNR) are used as error metrics to evaluate the performance of the DL workflow. Through our blind testing experiments, the DL workflow offers predictions as accurate as our physics-based reservoir simulations, yet 300 times more efficient than the latter. The developed workflow shows superior performance with an AAPE of less than 5% and R2 score of more than 0.99 between actual and predicted values. The workflow can predict other required outputs that numerical simulators can typically calculate, such as solubility trapping, mineral trapping, and injected fluid densities in supercritical and aqueous phases. The proposed DL workflow is not only physics informed but also driven by inputs and outputs (data-driven) and thus offers a robust prediction of the carbon storage potential in deep saline aquifers with considering the coupled physics and potential fluid leakage risk." @default.
- W4317796670 created "2023-01-24" @default.
- W4317796670 creator A5057212913 @default.
- W4317796670 creator A5081032657 @default.
- W4317796670 creator A5081730437 @default.
- W4317796670 date "2023-01-24" @default.
- W4317796670 modified "2023-09-23" @default.
- W4317796670 title "Physics Informed Surrogate Model Development in Predicting Dynamic Temporal and Spatial Variations During CO2 Injection into Deep Saline Aquifers" @default.
- W4317796670 cites W1967991785 @default.
- W4317796670 cites W1968937537 @default.
- W4317796670 cites W1981008593 @default.
- W4317796670 cites W1981362166 @default.
- W4317796670 cites W1985717587 @default.
- W4317796670 cites W1985762111 @default.
- W4317796670 cites W1986202332 @default.
- W4317796670 cites W1993041645 @default.
- W4317796670 cites W2000662987 @default.
- W4317796670 cites W2009506394 @default.
- W4317796670 cites W2015624944 @default.
- W4317796670 cites W2024717626 @default.
- W4317796670 cites W2040023566 @default.
- W4317796670 cites W2054520504 @default.
- W4317796670 cites W2063275568 @default.
- W4317796670 cites W2104992059 @default.
- W4317796670 cites W2135183586 @default.
- W4317796670 cites W2166177315 @default.
- W4317796670 cites W2233592503 @default.
- W4317796670 cites W2346659632 @default.
- W4317796670 cites W2473747298 @default.
- W4317796670 cites W2492790152 @default.
- W4317796670 cites W2514971423 @default.
- W4317796670 cites W2552532143 @default.
- W4317796670 cites W2759565175 @default.
- W4317796670 cites W2766593351 @default.
- W4317796670 cites W2776567029 @default.
- W4317796670 cites W2784733489 @default.
- W4317796670 cites W2803396148 @default.
- W4317796670 cites W2896355894 @default.
- W4317796670 cites W2896728354 @default.
- W4317796670 cites W2896741692 @default.
- W4317796670 cites W2897242826 @default.
- W4317796670 cites W2897424041 @default.
- W4317796670 cites W2914938183 @default.
- W4317796670 cites W2916048570 @default.
- W4317796670 cites W2916212838 @default.
- W4317796670 cites W2949265864 @default.
- W4317796670 cites W2981461641 @default.
- W4317796670 cites W2983576085 @default.
- W4317796670 cites W2988238768 @default.
- W4317796670 cites W2993989165 @default.
- W4317796670 cites W2999849227 @default.
- W4317796670 cites W3025291046 @default.
- W4317796670 cites W3033203454 @default.
- W4317796670 cites W3039974030 @default.
- W4317796670 cites W3088786344 @default.
- W4317796670 cites W3159473976 @default.
- W4317796670 cites W4200139982 @default.
- W4317796670 cites W4206527328 @default.
- W4317796670 cites W4211128374 @default.
- W4317796670 cites W2910719723 @default.
- W4317796670 doi "https://doi.org/10.2118/212693-ms" @default.
- W4317796670 hasPublicationYear "2023" @default.
- W4317796670 type Work @default.
- W4317796670 citedByCount "3" @default.
- W4317796670 countsByYear W43177966702023 @default.
- W4317796670 crossrefType "proceedings-article" @default.
- W4317796670 hasAuthorship W4317796670A5057212913 @default.
- W4317796670 hasAuthorship W4317796670A5081032657 @default.
- W4317796670 hasAuthorship W4317796670A5081730437 @default.
- W4317796670 hasConcept C127313418 @default.
- W4317796670 hasConcept C159390177 @default.
- W4317796670 hasConcept C177212765 @default.
- W4317796670 hasConcept C187320778 @default.
- W4317796670 hasConcept C39432304 @default.
- W4317796670 hasConcept C41008148 @default.
- W4317796670 hasConcept C75622301 @default.
- W4317796670 hasConcept C76177295 @default.
- W4317796670 hasConcept C77088390 @default.
- W4317796670 hasConcept C78762247 @default.
- W4317796670 hasConceptScore W4317796670C127313418 @default.
- W4317796670 hasConceptScore W4317796670C159390177 @default.
- W4317796670 hasConceptScore W4317796670C177212765 @default.
- W4317796670 hasConceptScore W4317796670C187320778 @default.
- W4317796670 hasConceptScore W4317796670C39432304 @default.
- W4317796670 hasConceptScore W4317796670C41008148 @default.
- W4317796670 hasConceptScore W4317796670C75622301 @default.
- W4317796670 hasConceptScore W4317796670C76177295 @default.
- W4317796670 hasConceptScore W4317796670C77088390 @default.
- W4317796670 hasConceptScore W4317796670C78762247 @default.
- W4317796670 hasLocation W43177966701 @default.
- W4317796670 hasOpenAccess W4317796670 @default.
- W4317796670 hasPrimaryLocation W43177966701 @default.
- W4317796670 hasRelatedWork W2007891203 @default.
- W4317796670 hasRelatedWork W2043709587 @default.
- W4317796670 hasRelatedWork W2065324869 @default.
- W4317796670 hasRelatedWork W2072796664 @default.
- W4317796670 hasRelatedWork W2168877033 @default.
- W4317796670 hasRelatedWork W2391409147 @default.
- W4317796670 hasRelatedWork W2901114022 @default.
- W4317796670 hasRelatedWork W2946326662 @default.