Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317802305> ?p ?o ?g. }
- W4317802305 endingPage "B88" @default.
- W4317802305 startingPage "B73" @default.
- W4317802305 abstract "The nonuniqueness of the solution to the geophysical inverse problem can lead to misinterpretation while characterizing the subsurface. To tackle this situation, ground-truth information from excavations and wells can be used to improve, calibrate, and interpret inverted models. We refer to quantitative interpretation as the decision analysis based on probability theory, which is focused on solving a classification problem. First, we present a probabilistic approach to classify the different types of materials or “categories” observed in borehole logs using multiple data sources: inverted 2D electrical resistivity tomography and induced polarization data and the positions ( x, z) of these boreholes. Then, using the Bayes’ rule and permanence of ratios, we compute the joint conditional probabilities of each category, given all data sources in the whole inverted model domain. We validate this approach with synthetic data modeling for a complex anthropogenic-geologic scenario and using real data from an old landfill. Afterward, we assess the performance of the probabilistic approach for classification and compare it with the machine learning algorithm of multilayer perceptron (MLP). In addition, we analyze the effect that the different data sources and the number of boreholes (and their distribution) have on both approaches with the synthetic case. Our results indicate that the MLP performance is better for delineating the different categories where the lateral contrasts in the synthetic resistivity model are small. Nevertheless, the classification obtained with the probabilistic approach using real data seems to provide a more geologically realistic distribution. We conclude that the probabilistic approach is robust for classifying categories when high spatial heterogeneity is expected and when ground-truth data are limited or not sparsely distributed. Finally, this approach can be easily extended to integrate multiple geophysical methods and does not require the optimization of hyperparameters as for MLP." @default.
- W4317802305 created "2023-01-24" @default.
- W4317802305 creator A5025611150 @default.
- W4317802305 creator A5055561025 @default.
- W4317802305 creator A5061454272 @default.
- W4317802305 creator A5072185590 @default.
- W4317802305 date "2023-04-20" @default.
- W4317802305 modified "2023-10-16" @default.
- W4317802305 title "Quantitative interpretation of geoelectric inverted data with a robust probabilistic approach" @default.
- W4317802305 cites W1798846751 @default.
- W4317802305 cites W1821143250 @default.
- W4317802305 cites W1967628409 @default.
- W4317802305 cites W2015373631 @default.
- W4317802305 cites W2027442956 @default.
- W4317802305 cites W2027547498 @default.
- W4317802305 cites W2037996624 @default.
- W4317802305 cites W20475988 @default.
- W4317802305 cites W2083600532 @default.
- W4317802305 cites W2084624795 @default.
- W4317802305 cites W2112857438 @default.
- W4317802305 cites W2113248292 @default.
- W4317802305 cites W2117063635 @default.
- W4317802305 cites W2130020977 @default.
- W4317802305 cites W2144118383 @default.
- W4317802305 cites W2165223655 @default.
- W4317802305 cites W2334864572 @default.
- W4317802305 cites W2530294916 @default.
- W4317802305 cites W2552101541 @default.
- W4317802305 cites W2588513233 @default.
- W4317802305 cites W2706053311 @default.
- W4317802305 cites W2736006415 @default.
- W4317802305 cites W2742540029 @default.
- W4317802305 cites W2742666648 @default.
- W4317802305 cites W2760922823 @default.
- W4317802305 cites W2762775423 @default.
- W4317802305 cites W2764043323 @default.
- W4317802305 cites W2765449478 @default.
- W4317802305 cites W2769836976 @default.
- W4317802305 cites W2800858937 @default.
- W4317802305 cites W2807001101 @default.
- W4317802305 cites W2894543335 @default.
- W4317802305 cites W2901030745 @default.
- W4317802305 cites W2908009222 @default.
- W4317802305 cites W2918506850 @default.
- W4317802305 cites W2931171980 @default.
- W4317802305 cites W2945618915 @default.
- W4317802305 cites W2949438352 @default.
- W4317802305 cites W2954743925 @default.
- W4317802305 cites W2980620471 @default.
- W4317802305 cites W2996524525 @default.
- W4317802305 cites W3035037957 @default.
- W4317802305 cites W3036867514 @default.
- W4317802305 cites W3044143324 @default.
- W4317802305 cites W3080352642 @default.
- W4317802305 cites W3092857960 @default.
- W4317802305 cites W3095269806 @default.
- W4317802305 cites W3107569396 @default.
- W4317802305 cites W3122438406 @default.
- W4317802305 cites W3122482465 @default.
- W4317802305 cites W3122920433 @default.
- W4317802305 cites W3126914845 @default.
- W4317802305 cites W3128224260 @default.
- W4317802305 cites W3133483839 @default.
- W4317802305 cites W3147262955 @default.
- W4317802305 cites W3162310876 @default.
- W4317802305 cites W3197785263 @default.
- W4317802305 cites W4200430492 @default.
- W4317802305 cites W4220825642 @default.
- W4317802305 cites W4238081577 @default.
- W4317802305 cites W4306687522 @default.
- W4317802305 doi "https://doi.org/10.1190/geo2022-0133.1" @default.
- W4317802305 hasPublicationYear "2023" @default.
- W4317802305 type Work @default.
- W4317802305 citedByCount "1" @default.
- W4317802305 countsByYear W43178023052023 @default.
- W4317802305 crossrefType "journal-article" @default.
- W4317802305 hasAuthorship W4317802305A5025611150 @default.
- W4317802305 hasAuthorship W4317802305A5055561025 @default.
- W4317802305 hasAuthorship W4317802305A5061454272 @default.
- W4317802305 hasAuthorship W4317802305A5072185590 @default.
- W4317802305 hasBestOaLocation W43178023051 @default.
- W4317802305 hasConcept C105795698 @default.
- W4317802305 hasConcept C107673813 @default.
- W4317802305 hasConcept C111472728 @default.
- W4317802305 hasConcept C11413529 @default.
- W4317802305 hasConcept C124101348 @default.
- W4317802305 hasConcept C127313418 @default.
- W4317802305 hasConcept C138885662 @default.
- W4317802305 hasConcept C149441793 @default.
- W4317802305 hasConcept C150560799 @default.
- W4317802305 hasConcept C154945302 @default.
- W4317802305 hasConcept C160920958 @default.
- W4317802305 hasConcept C187320778 @default.
- W4317802305 hasConcept C207201462 @default.
- W4317802305 hasConcept C33923547 @default.
- W4317802305 hasConcept C41008148 @default.
- W4317802305 hasConcept C49937458 @default.
- W4317802305 hasConcept C75553542 @default.