Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317802907> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4317802907 abstract "Detecting brain tumors in their early stages is crucial. Brain tumors are classified by biopsy, which can only be performed through definitive brain surgery. Computational intelligence-oriented techniques can help physicians identify and classify brain tumors. Herein, we proposed two deep learning methods and several machine learning approaches for diagnosing three types of tumor, i.e., glioma, meningioma, and pituitary gland tumors, as well as healthy brains without tumors, using magnetic resonance brain images to enable physicians to detect with high accuracy tumors in early stages.A dataset containing 3264 Magnetic Resonance Imaging (MRI) brain images comprising images of glioma, meningioma, pituitary gland tumors, and healthy brains were used in this study. First, preprocessing and augmentation algorithms were applied to MRI brain images. Next, we developed a new 2D Convolutional Neural Network (CNN) and a convolutional auto-encoder network, both of which were already trained by our assigned hyperparameters. Then 2D CNN includes several convolution layers; all layers in this hierarchical network have a 2*2 kernel function. This network consists of eight convolutional and four pooling layers, and after all convolution layers, batch-normalization layers were applied. The modified auto-encoder network includes a convolutional auto-encoder network and a convolutional network for classification that uses the last output encoder layer of the first part. Furthermore, six machine-learning techniques that were applied to classify brain tumors were also compared in this study.The training accuracy of the proposed 2D CNN and that of the proposed auto-encoder network were found to be 96.47% and 95.63%, respectively. The average recall values for the 2D CNN and auto-encoder networks were 95% and 94%, respectively. The areas under the ROC curve for both networks were 0.99 or 1. Among applied machine learning methods, Multilayer Perceptron (MLP) (28%) and K-Nearest Neighbors (KNN) (86%) achieved the lowest and highest accuracy rates, respectively. Statistical tests showed a significant difference between the means of the two methods developed in this study and several machine learning methods (p-value < 0.05).The present study shows that the proposed 2D CNN has optimal accuracy in classifying brain tumors. Comparing the performance of various CNNs and machine learning methods in diagnosing three types of brain tumors revealed that the 2D CNN achieved exemplary performance and optimal execution time without latency. This proposed network is less complex than the auto-encoder network and can be employed by radiologists and physicians in clinical systems for brain tumor detection." @default.
- W4317802907 created "2023-01-24" @default.
- W4317802907 creator A5029831466 @default.
- W4317802907 creator A5030247565 @default.
- W4317802907 creator A5034071517 @default.
- W4317802907 creator A5084609525 @default.
- W4317802907 date "2023-01-23" @default.
- W4317802907 modified "2023-10-06" @default.
- W4317802907 title "MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques" @default.
- W4317802907 cites W1832115302 @default.
- W4317802907 cites W1967551258 @default.
- W4317802907 cites W2087016914 @default.
- W4317802907 cites W2533800772 @default.
- W4317802907 cites W2538556778 @default.
- W4317802907 cites W2574952845 @default.
- W4317802907 cites W2588755956 @default.
- W4317802907 cites W2592929672 @default.
- W4317802907 cites W2596470483 @default.
- W4317802907 cites W2605687850 @default.
- W4317802907 cites W2731899572 @default.
- W4317802907 cites W2741015411 @default.
- W4317802907 cites W2780996194 @default.
- W4317802907 cites W2782575788 @default.
- W4317802907 cites W2810138651 @default.
- W4317802907 cites W2893347629 @default.
- W4317802907 cites W2899479069 @default.
- W4317802907 cites W2904208441 @default.
- W4317802907 cites W2917942747 @default.
- W4317802907 cites W2921483513 @default.
- W4317802907 cites W2963103155 @default.
- W4317802907 cites W2963384288 @default.
- W4317802907 cites W2964381743 @default.
- W4317802907 cites W2968677363 @default.
- W4317802907 cites W2972838422 @default.
- W4317802907 cites W2978707514 @default.
- W4317802907 cites W3007681764 @default.
- W4317802907 cites W3011430986 @default.
- W4317802907 cites W3167203677 @default.
- W4317802907 cites W3179570440 @default.
- W4317802907 cites W4252335709 @default.
- W4317802907 cites W4254065421 @default.
- W4317802907 cites W4281997030 @default.
- W4317802907 doi "https://doi.org/10.1186/s12911-023-02114-6" @default.
- W4317802907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36691030" @default.
- W4317802907 hasPublicationYear "2023" @default.
- W4317802907 type Work @default.
- W4317802907 citedByCount "22" @default.
- W4317802907 countsByYear W43178029072023 @default.
- W4317802907 crossrefType "journal-article" @default.
- W4317802907 hasAuthorship W4317802907A5029831466 @default.
- W4317802907 hasAuthorship W4317802907A5030247565 @default.
- W4317802907 hasAuthorship W4317802907A5034071517 @default.
- W4317802907 hasAuthorship W4317802907A5084609525 @default.
- W4317802907 hasBestOaLocation W43178029071 @default.
- W4317802907 hasConcept C108583219 @default.
- W4317802907 hasConcept C119857082 @default.
- W4317802907 hasConcept C126838900 @default.
- W4317802907 hasConcept C142724271 @default.
- W4317802907 hasConcept C143409427 @default.
- W4317802907 hasConcept C153180895 @default.
- W4317802907 hasConcept C154945302 @default.
- W4317802907 hasConcept C2779130545 @default.
- W4317802907 hasConcept C34736171 @default.
- W4317802907 hasConcept C41008148 @default.
- W4317802907 hasConcept C71924100 @default.
- W4317802907 hasConcept C81363708 @default.
- W4317802907 hasConceptScore W4317802907C108583219 @default.
- W4317802907 hasConceptScore W4317802907C119857082 @default.
- W4317802907 hasConceptScore W4317802907C126838900 @default.
- W4317802907 hasConceptScore W4317802907C142724271 @default.
- W4317802907 hasConceptScore W4317802907C143409427 @default.
- W4317802907 hasConceptScore W4317802907C153180895 @default.
- W4317802907 hasConceptScore W4317802907C154945302 @default.
- W4317802907 hasConceptScore W4317802907C2779130545 @default.
- W4317802907 hasConceptScore W4317802907C34736171 @default.
- W4317802907 hasConceptScore W4317802907C41008148 @default.
- W4317802907 hasConceptScore W4317802907C71924100 @default.
- W4317802907 hasConceptScore W4317802907C81363708 @default.
- W4317802907 hasIssue "1" @default.
- W4317802907 hasLocation W43178029071 @default.
- W4317802907 hasLocation W43178029072 @default.
- W4317802907 hasLocation W43178029073 @default.
- W4317802907 hasOpenAccess W4317802907 @default.
- W4317802907 hasPrimaryLocation W43178029071 @default.
- W4317802907 hasRelatedWork W2397288865 @default.
- W4317802907 hasRelatedWork W3029198973 @default.
- W4317802907 hasRelatedWork W3133861977 @default.
- W4317802907 hasRelatedWork W3159670968 @default.
- W4317802907 hasRelatedWork W3167935049 @default.
- W4317802907 hasRelatedWork W3193565141 @default.
- W4317802907 hasRelatedWork W4226493464 @default.
- W4317802907 hasRelatedWork W4293226380 @default.
- W4317802907 hasRelatedWork W4312417841 @default.
- W4317802907 hasRelatedWork W4375867731 @default.
- W4317802907 hasVolume "23" @default.
- W4317802907 isParatext "false" @default.
- W4317802907 isRetracted "false" @default.
- W4317802907 workType "article" @default.