Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317829528> ?p ?o ?g. }
- W4317829528 abstract "Nowadays, chitosan biopolymer has received much research attention in geoenvironmental practices like soil erosion reduction, hydraulic conductivity, and heavy metal absorption in contaminated soil. Nevertheless, the effect of chitosan incorporation on freeze–thaw resistance of soft clays has not been evaluated comprehensively. In this research, different concentrations (2%, 4%, 6%, and 8%) of biocompatible chitosan, which is synthesized from the waste of shrimp shells, are utilized to investigate its potential in resistance of clay specimens subjected to 1, 2, 3, 6, 12, and 24 freezing and thawing cycles. The results demonstrate that the stress–strain behavior and compressive strengths of the specimens significantly depend on the amount of added chitosan solution. The unconfined compressive strength grows as the chitosan content increases from 2% to 6%. The 8% chitosan destroys the balance in the overall electrical neutrality of the mixture and does not make a noticeable influence in comparison to 6%. Moreover, the interparticle interactions are strongly linked to the curing time and moisture content of specimens, and chitosan solution can provide an extra interaction among clay particles in the early days. Increasing the curing time for the treated specimens leads to an increase in compressive strength while its efficiency remains constant over time. The durability index used to quantify the resistance of the treated specimens to freeze–thaw damage reveals that by three freezing and thawing cycles, the index reduces to 0.64 and 0.66 for samples in optimum and saturated water contents, respectively. This reduction will be negligible for higher cycles (e.g., 0.53 and 0.50 for 24 cycles). In addition, according to the analysis by scanning electron microscopy, the number of freezing and thawing cycles has a substantial influence on enlarging the voids and clay disintegration, which damages the stabilized soft clays.Practical ApplicationsThe freeze–thaw cycles change the geotechnical properties of soft clays and result in a further alteration in soil structure and loss of strength. These effects should be considered for a safe design in cold regions, particularly those underlined by permafrost. This research is performed to investigate and quantify the behavior of using an environmentally friendly material known as chitosan, which is one of the low-cost biopolymers extracted from discarded crustacean shells. In soft soils, the size of pores is approximately large (4–5 μm) and cycles of freezing and thawing cause an extra increase in the size of the voids. Mixing 6% chitosan at the optimum water content and curing for 28 days cause the chitosan to react with clay minerals and reduce the size of the voids to approximately 2–3 μm, resulting in a solid structure that is 90% more durable than the untreated soils." @default.
- W4317829528 created "2023-01-24" @default.
- W4317829528 creator A5014081977 @default.
- W4317829528 creator A5051026647 @default.
- W4317829528 creator A5065260465 @default.
- W4317829528 date "2023-06-01" @default.
- W4317829528 modified "2023-10-14" @default.
- W4317829528 title "Stabilization of Soft Clays Exposed to Freeze–Thaw Cycles Using Chitosan" @default.
- W4317829528 cites W1499364814 @default.
- W4317829528 cites W1827886703 @default.
- W4317829528 cites W1963632672 @default.
- W4317829528 cites W1973075415 @default.
- W4317829528 cites W1979688810 @default.
- W4317829528 cites W1983655274 @default.
- W4317829528 cites W1988483820 @default.
- W4317829528 cites W1989963108 @default.
- W4317829528 cites W1991894150 @default.
- W4317829528 cites W1997253418 @default.
- W4317829528 cites W1997860139 @default.
- W4317829528 cites W1998972271 @default.
- W4317829528 cites W2000888259 @default.
- W4317829528 cites W2001710492 @default.
- W4317829528 cites W2002863463 @default.
- W4317829528 cites W2007851090 @default.
- W4317829528 cites W2015551491 @default.
- W4317829528 cites W2036557328 @default.
- W4317829528 cites W2039533515 @default.
- W4317829528 cites W2049514441 @default.
- W4317829528 cites W2060820021 @default.
- W4317829528 cites W2070394663 @default.
- W4317829528 cites W2074980407 @default.
- W4317829528 cites W2075373365 @default.
- W4317829528 cites W2089292250 @default.
- W4317829528 cites W2090179332 @default.
- W4317829528 cites W2091913054 @default.
- W4317829528 cites W2093176193 @default.
- W4317829528 cites W2102268161 @default.
- W4317829528 cites W2103426025 @default.
- W4317829528 cites W2134673353 @default.
- W4317829528 cites W2163383536 @default.
- W4317829528 cites W2290551300 @default.
- W4317829528 cites W2315773458 @default.
- W4317829528 cites W2323425801 @default.
- W4317829528 cites W2335784895 @default.
- W4317829528 cites W2758429426 @default.
- W4317829528 cites W2780956170 @default.
- W4317829528 cites W2795672410 @default.
- W4317829528 cites W2804664313 @default.
- W4317829528 cites W2900736964 @default.
- W4317829528 cites W2943355653 @default.
- W4317829528 cites W3000502605 @default.
- W4317829528 cites W3037047206 @default.
- W4317829528 cites W3092815349 @default.
- W4317829528 cites W3093711784 @default.
- W4317829528 cites W3122746609 @default.
- W4317829528 cites W3194586380 @default.
- W4317829528 cites W4212895425 @default.
- W4317829528 cites W4220841695 @default.
- W4317829528 doi "https://doi.org/10.1061/jcrgei.creng-690" @default.
- W4317829528 hasPublicationYear "2023" @default.
- W4317829528 type Work @default.
- W4317829528 citedByCount "3" @default.
- W4317829528 countsByYear W43178295282023 @default.
- W4317829528 crossrefType "journal-article" @default.
- W4317829528 hasAuthorship W4317829528A5014081977 @default.
- W4317829528 hasAuthorship W4317829528A5051026647 @default.
- W4317829528 hasAuthorship W4317829528A5065260465 @default.
- W4317829528 hasConcept C127313418 @default.
- W4317829528 hasConcept C127413603 @default.
- W4317829528 hasConcept C132976073 @default.
- W4317829528 hasConcept C159985019 @default.
- W4317829528 hasConcept C187320778 @default.
- W4317829528 hasConcept C192562407 @default.
- W4317829528 hasConcept C24939127 @default.
- W4317829528 hasConcept C2778636629 @default.
- W4317829528 hasConcept C2779732960 @default.
- W4317829528 hasConcept C30407753 @default.
- W4317829528 hasConcept C42360764 @default.
- W4317829528 hasConcept C521977710 @default.
- W4317829528 hasConceptScore W4317829528C127313418 @default.
- W4317829528 hasConceptScore W4317829528C127413603 @default.
- W4317829528 hasConceptScore W4317829528C132976073 @default.
- W4317829528 hasConceptScore W4317829528C159985019 @default.
- W4317829528 hasConceptScore W4317829528C187320778 @default.
- W4317829528 hasConceptScore W4317829528C192562407 @default.
- W4317829528 hasConceptScore W4317829528C24939127 @default.
- W4317829528 hasConceptScore W4317829528C2778636629 @default.
- W4317829528 hasConceptScore W4317829528C2779732960 @default.
- W4317829528 hasConceptScore W4317829528C30407753 @default.
- W4317829528 hasConceptScore W4317829528C42360764 @default.
- W4317829528 hasConceptScore W4317829528C521977710 @default.
- W4317829528 hasIssue "2" @default.
- W4317829528 hasLocation W43178295281 @default.
- W4317829528 hasOpenAccess W4317829528 @default.
- W4317829528 hasPrimaryLocation W43178295281 @default.
- W4317829528 hasRelatedWork W1802788823 @default.
- W4317829528 hasRelatedWork W1867822675 @default.
- W4317829528 hasRelatedWork W1961348826 @default.
- W4317829528 hasRelatedWork W2051979529 @default.
- W4317829528 hasRelatedWork W2079264669 @default.