Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317884032> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4317884032 endingPage "209" @default.
- W4317884032 startingPage "169" @default.
- W4317884032 abstract "This chapter includes fusion of SAR and hyperspectral data for land use land cover (LULC) classification. LULC classification using satellite data is required for providing useful and reliable information about the earth’s surface features. Individually, data from different satellite sensors are not sufficient to distinguish various LULC features. This raises the importance of information integration retrieved from multiple sensors. Satellite data fusion from different sensors enables enhanced delineation of land cover features obtained from different satellite sensors. Nowadays, advanced sensors such as hyperspectral and synthetic aperture RADAR (SAR) have shown their potential for extracting earth surface information. Synergizing the information by fusion of SAR and hyperspectral will complement each method’s limitations and enhance information retrieval. This study includes the fusion of Hyperion data with Radarsat-2 C-band and advanced land observing satellite (ALOS) phased array type synthetic aperture radar (PALSAR) L-band, and fully polarimetric SAR (PolSAR) data individually. The fusion of datasets was carried out at three different levels, i.e., the pixel, feature, and decision levels. For pixel-level fusion, high-pass filter (HPF), wavelet, and Gram–Schmidt (GS) fusion techniques were chosen as these were able to preserve spectral properties. In feature-level fusion, kernel-based principal component analysis (PCA) was performed on Hyperion data to extract features, and multi-component scattering model (MCSM) decomposition parameters were extracted from PolSAR data. A feature vector was formed from the extracted features obtained from the Hyperion and SAR datasets. In the case of decision-level fusion, a one-against-all approach of support vector machines (SVM) was used to decide the class membership value, which was based on the membership values of generated rule images of the classified image. Non-linear SVM-based classification was performed for the classification of individual as well as fused images. Overall accuracy (OA), kappa, and individual class accuracies were calculated to assess accuracy. It was observed from the obtained classified results that classification of HPF fusion gave better results for fusing hyperspectral and PolSAR data in comparison with the other pixel-level fusion approaches performed. Among the classified data of fusions of Hyperion and Radarsat-2 and Hyperion and ALOS PALSAR, fusion of Hyperion with Radarsat-2 data performed better. In the case of feature-level and decision-level fusion, Hyperion and ALOS PALSAR data fusion outperformed Hyperion with Radarsat-2 data in terms of OA and kappa. A comparative analysis was carried out between all the classified images of obtained fused products at three fusion levels; it was found that the overall Hyperion with ALOS PALSAR data at feature-level fusion was able to enhance the LULC features and gave a better classification accuracy." @default.
- W4317884032 created "2023-01-25" @default.
- W4317884032 creator A5016766819 @default.
- W4317884032 creator A5028363967 @default.
- W4317884032 creator A5090342082 @default.
- W4317884032 date "2023-01-24" @default.
- W4317884032 modified "2023-09-26" @default.
- W4317884032 title "Synergistic Fusion of Spaceborne Polarimetric SAR and Hyperspectral Data for Land Cover Classification" @default.
- W4317884032 doi "https://doi.org/10.1201/9781003204466-8" @default.
- W4317884032 hasPublicationYear "2023" @default.
- W4317884032 type Work @default.
- W4317884032 citedByCount "0" @default.
- W4317884032 crossrefType "book-chapter" @default.
- W4317884032 hasAuthorship W4317884032A5016766819 @default.
- W4317884032 hasAuthorship W4317884032A5028363967 @default.
- W4317884032 hasAuthorship W4317884032A5090342082 @default.
- W4317884032 hasConcept C127413603 @default.
- W4317884032 hasConcept C138885662 @default.
- W4317884032 hasConcept C146978453 @default.
- W4317884032 hasConcept C147176958 @default.
- W4317884032 hasConcept C153180895 @default.
- W4317884032 hasConcept C154945302 @default.
- W4317884032 hasConcept C159078339 @default.
- W4317884032 hasConcept C19269812 @default.
- W4317884032 hasConcept C205649164 @default.
- W4317884032 hasConcept C27438332 @default.
- W4317884032 hasConcept C2776401178 @default.
- W4317884032 hasConcept C2780648208 @default.
- W4317884032 hasConcept C33954974 @default.
- W4317884032 hasConcept C41008148 @default.
- W4317884032 hasConcept C41895202 @default.
- W4317884032 hasConcept C4792198 @default.
- W4317884032 hasConcept C62649853 @default.
- W4317884032 hasConcept C87360688 @default.
- W4317884032 hasConceptScore W4317884032C127413603 @default.
- W4317884032 hasConceptScore W4317884032C138885662 @default.
- W4317884032 hasConceptScore W4317884032C146978453 @default.
- W4317884032 hasConceptScore W4317884032C147176958 @default.
- W4317884032 hasConceptScore W4317884032C153180895 @default.
- W4317884032 hasConceptScore W4317884032C154945302 @default.
- W4317884032 hasConceptScore W4317884032C159078339 @default.
- W4317884032 hasConceptScore W4317884032C19269812 @default.
- W4317884032 hasConceptScore W4317884032C205649164 @default.
- W4317884032 hasConceptScore W4317884032C27438332 @default.
- W4317884032 hasConceptScore W4317884032C2776401178 @default.
- W4317884032 hasConceptScore W4317884032C2780648208 @default.
- W4317884032 hasConceptScore W4317884032C33954974 @default.
- W4317884032 hasConceptScore W4317884032C41008148 @default.
- W4317884032 hasConceptScore W4317884032C41895202 @default.
- W4317884032 hasConceptScore W4317884032C4792198 @default.
- W4317884032 hasConceptScore W4317884032C62649853 @default.
- W4317884032 hasConceptScore W4317884032C87360688 @default.
- W4317884032 hasLocation W43178840321 @default.
- W4317884032 hasOpenAccess W4317884032 @default.
- W4317884032 hasPrimaryLocation W43178840321 @default.
- W4317884032 hasRelatedWork W1585144779 @default.
- W4317884032 hasRelatedWork W2114449385 @default.
- W4317884032 hasRelatedWork W2142308737 @default.
- W4317884032 hasRelatedWork W2146341366 @default.
- W4317884032 hasRelatedWork W2255158569 @default.
- W4317884032 hasRelatedWork W2341545927 @default.
- W4317884032 hasRelatedWork W2367227827 @default.
- W4317884032 hasRelatedWork W3097030804 @default.
- W4317884032 hasRelatedWork W3154145980 @default.
- W4317884032 hasRelatedWork W3164097808 @default.
- W4317884032 isParatext "false" @default.
- W4317884032 isRetracted "false" @default.
- W4317884032 workType "book-chapter" @default.