Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317928356> ?p ?o ?g. }
- W4317928356 endingPage "359" @default.
- W4317928356 startingPage "343" @default.
- W4317928356 abstract "Vehicular Edge Computing (VEC) is envisioned as a promising approach to process explosive vehicle tasks. In the VEC system, vehicles can choose to upload tasks to nearby edge nodes for processing. This approach requires an efficient communication method, and Non-Orthogonal Multiple Access (NOMA) can improve channel spectrum efficiency and capacity. However, in the VEC system, the channel condition is complex due to the fast mobility of vehicles, and the arrival time of each task is stochastic. These characteristics greatly affect the latency of tasks. In this paper, we adopt a NOMA-based task offloading and allocation scheme to improve the VEC system. To cope with complex channel conditions, we use NOMA to upload tasks in batches. We first establish the mathematical model, and divide the offloading and allocation of tasks into two processes: transmission and computation. Then we determine appropriate edge nodes for transmission and computation according to the position and speed of vehicles. We define the optimization objective as maximizing the number of tasks completed, and find that it is an integer nonlinear problem. Since there are more integer variables, this optimization problem is difficult to solve directly. Through further analysis, we design Asymptotic Inference Greedy Strategy (AIGS) algorithm based on heuristics. Simulation results demonstrate that our algorithm has great advantages." @default.
- W4317928356 created "2023-01-25" @default.
- W4317928356 creator A5040500070 @default.
- W4317928356 creator A5043256259 @default.
- W4317928356 creator A5054863127 @default.
- W4317928356 creator A5067520942 @default.
- W4317928356 creator A5084923117 @default.
- W4317928356 date "2022-01-01" @default.
- W4317928356 modified "2023-10-16" @default.
- W4317928356 title "NOMA-Based Task Offloading and Allocation in Vehicular Edge Computing Networks" @default.
- W4317928356 cites W2027563534 @default.
- W4317928356 cites W2624989916 @default.
- W4317928356 cites W2895973886 @default.
- W4317928356 cites W2896918824 @default.
- W4317928356 cites W2951436438 @default.
- W4317928356 cites W2963956198 @default.
- W4317928356 cites W2968424451 @default.
- W4317928356 cites W2972160836 @default.
- W4317928356 cites W2982650630 @default.
- W4317928356 cites W2989463999 @default.
- W4317928356 cites W3005620403 @default.
- W4317928356 cites W3009963213 @default.
- W4317928356 cites W3010725646 @default.
- W4317928356 cites W3011869236 @default.
- W4317928356 cites W3024155406 @default.
- W4317928356 cites W3034730089 @default.
- W4317928356 cites W3035620887 @default.
- W4317928356 cites W3035788210 @default.
- W4317928356 cites W3037951940 @default.
- W4317928356 cites W3042446967 @default.
- W4317928356 cites W3102167156 @default.
- W4317928356 cites W3109515211 @default.
- W4317928356 cites W3114289271 @default.
- W4317928356 cites W3120088009 @default.
- W4317928356 cites W3134947650 @default.
- W4317928356 cites W3151040466 @default.
- W4317928356 cites W3164267333 @default.
- W4317928356 cites W3170708168 @default.
- W4317928356 cites W3173501318 @default.
- W4317928356 cites W3191717679 @default.
- W4317928356 cites W3196856912 @default.
- W4317928356 cites W3199872908 @default.
- W4317928356 cites W3202494864 @default.
- W4317928356 cites W3202527154 @default.
- W4317928356 doi "https://doi.org/10.1007/978-3-031-24383-7_19" @default.
- W4317928356 hasPublicationYear "2022" @default.
- W4317928356 type Work @default.
- W4317928356 citedByCount "0" @default.
- W4317928356 crossrefType "book-chapter" @default.
- W4317928356 hasAuthorship W4317928356A5040500070 @default.
- W4317928356 hasAuthorship W4317928356A5043256259 @default.
- W4317928356 hasAuthorship W4317928356A5054863127 @default.
- W4317928356 hasAuthorship W4317928356A5067520942 @default.
- W4317928356 hasAuthorship W4317928356A5084923117 @default.
- W4317928356 hasConcept C111919701 @default.
- W4317928356 hasConcept C11413529 @default.
- W4317928356 hasConcept C120314980 @default.
- W4317928356 hasConcept C126255220 @default.
- W4317928356 hasConcept C127162648 @default.
- W4317928356 hasConcept C127413603 @default.
- W4317928356 hasConcept C127705205 @default.
- W4317928356 hasConcept C137836250 @default.
- W4317928356 hasConcept C154945302 @default.
- W4317928356 hasConcept C162307627 @default.
- W4317928356 hasConcept C201995342 @default.
- W4317928356 hasConcept C2778456923 @default.
- W4317928356 hasConcept C2780451532 @default.
- W4317928356 hasConcept C31258907 @default.
- W4317928356 hasConcept C33923547 @default.
- W4317928356 hasConcept C41008148 @default.
- W4317928356 hasConcept C71901391 @default.
- W4317928356 hasConceptScore W4317928356C111919701 @default.
- W4317928356 hasConceptScore W4317928356C11413529 @default.
- W4317928356 hasConceptScore W4317928356C120314980 @default.
- W4317928356 hasConceptScore W4317928356C126255220 @default.
- W4317928356 hasConceptScore W4317928356C127162648 @default.
- W4317928356 hasConceptScore W4317928356C127413603 @default.
- W4317928356 hasConceptScore W4317928356C127705205 @default.
- W4317928356 hasConceptScore W4317928356C137836250 @default.
- W4317928356 hasConceptScore W4317928356C154945302 @default.
- W4317928356 hasConceptScore W4317928356C162307627 @default.
- W4317928356 hasConceptScore W4317928356C201995342 @default.
- W4317928356 hasConceptScore W4317928356C2778456923 @default.
- W4317928356 hasConceptScore W4317928356C2780451532 @default.
- W4317928356 hasConceptScore W4317928356C31258907 @default.
- W4317928356 hasConceptScore W4317928356C33923547 @default.
- W4317928356 hasConceptScore W4317928356C41008148 @default.
- W4317928356 hasConceptScore W4317928356C71901391 @default.
- W4317928356 hasLocation W43179283561 @default.
- W4317928356 hasOpenAccess W4317928356 @default.
- W4317928356 hasPrimaryLocation W43179283561 @default.
- W4317928356 hasRelatedWork W2810014552 @default.
- W4317928356 hasRelatedWork W2945616868 @default.
- W4317928356 hasRelatedWork W3010284296 @default.
- W4317928356 hasRelatedWork W3106610906 @default.
- W4317928356 hasRelatedWork W3116709161 @default.
- W4317928356 hasRelatedWork W3117321386 @default.
- W4317928356 hasRelatedWork W3197382768 @default.