Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317938045> ?p ?o ?g. }
- W4317938045 abstract "In self-determination theory (SDT), multiple conceptual regulations of motivation are posited. These forms of motivation are especially qualitatively viewed by SDT researchers, and there are situations in which combinations of these regulations occur. In this article, instead of the commonly used numerical approach, this is modeled more versatilely by sets and relations. We discuss discrete mathematical models from the theory of knowledge spaces for the combinatorial conceptualization of motivation. Thereby, we constructively add insight into a dispute of opinions on the unidimensionality vs. multidimensionality of motivation in SDT literature. The motivation order derived in our example, albeit doubly branched, was approximately a chain, and we could quantify the combinatorial details of that approximation. Essentially, two combinatorial dimensions reducible to one were observed, which could be studied in other more popular scales as well. This approach allows us to define the distinct, including even equally informative, gradations of any regulation type. Thus, we may identify specific forms of motivation that may otherwise be difficult to measure or not be separable empirically. This could help to dissolve possible inconsistencies that may arise in applications of the theory in distinguishing the different regulation types. How to obtain the motivation structures in practice is demonstrated by relational data mining. The technique applied is an inductive item tree analysis, an established method of Boolean analysis of questionnaires. For a data set on learning motivation, the motivation spaces and co-occurrence relations for the gradations of the basic regulation types are extracted, thus, enumerating their potential subforms. In that empirical application, the underlying models were computed within each of the intrinsic, identified, introjected, and external regulations, in autonomous and controlled motivations, and the entire motivation domain. In future studies, the approach of this article could be employed to develop adaptive assessment and training procedures in SDT contexts and for dynamical extensions of the theory, if motivational behavior can go in time." @default.
- W4317938045 created "2023-01-25" @default.
- W4317938045 creator A5025566009 @default.
- W4317938045 date "2023-01-25" @default.
- W4317938045 modified "2023-09-25" @default.
- W4317938045 title "Qualitative motivation with sets and relations" @default.
- W4317938045 cites W1519908411 @default.
- W4317938045 cites W1765870892 @default.
- W4317938045 cites W1829441674 @default.
- W4317938045 cites W1933417429 @default.
- W4317938045 cites W1994566649 @default.
- W4317938045 cites W1995748488 @default.
- W4317938045 cites W2004881043 @default.
- W4317938045 cites W2005273896 @default.
- W4317938045 cites W2006242427 @default.
- W4317938045 cites W2009198194 @default.
- W4317938045 cites W2017291441 @default.
- W4317938045 cites W2019152442 @default.
- W4317938045 cites W2052729098 @default.
- W4317938045 cites W2057898852 @default.
- W4317938045 cites W2059477074 @default.
- W4317938045 cites W2060012113 @default.
- W4317938045 cites W2068490015 @default.
- W4317938045 cites W2070033429 @default.
- W4317938045 cites W2070472396 @default.
- W4317938045 cites W2078735640 @default.
- W4317938045 cites W2081981742 @default.
- W4317938045 cites W2082204036 @default.
- W4317938045 cites W2083771381 @default.
- W4317938045 cites W2088200404 @default.
- W4317938045 cites W2093397547 @default.
- W4317938045 cites W2093869191 @default.
- W4317938045 cites W2113090014 @default.
- W4317938045 cites W2122517769 @default.
- W4317938045 cites W2124800699 @default.
- W4317938045 cites W2130074128 @default.
- W4317938045 cites W2141846678 @default.
- W4317938045 cites W2162929365 @default.
- W4317938045 cites W2165864227 @default.
- W4317938045 cites W2239486811 @default.
- W4317938045 cites W2298801918 @default.
- W4317938045 cites W2541851166 @default.
- W4317938045 cites W2617998995 @default.
- W4317938045 cites W3164154887 @default.
- W4317938045 cites W4214672377 @default.
- W4317938045 cites W4229457720 @default.
- W4317938045 cites W4230540798 @default.
- W4317938045 cites W4234326533 @default.
- W4317938045 cites W4242883546 @default.
- W4317938045 cites W4245804969 @default.
- W4317938045 cites W4246281578 @default.
- W4317938045 cites W4247424885 @default.
- W4317938045 cites W4281726276 @default.
- W4317938045 cites W4283365781 @default.
- W4317938045 cites W4304144201 @default.
- W4317938045 doi "https://doi.org/10.3389/fpsyg.2022.993660" @default.
- W4317938045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36760895" @default.
- W4317938045 hasPublicationYear "2023" @default.
- W4317938045 type Work @default.
- W4317938045 citedByCount "0" @default.
- W4317938045 crossrefType "journal-article" @default.
- W4317938045 hasAuthorship W4317938045A5025566009 @default.
- W4317938045 hasBestOaLocation W43179380452 @default.
- W4317938045 hasConcept C154945302 @default.
- W4317938045 hasConcept C15744967 @default.
- W4317938045 hasConcept C162324750 @default.
- W4317938045 hasConcept C177264268 @default.
- W4317938045 hasConcept C180747234 @default.
- W4317938045 hasConcept C187736073 @default.
- W4317938045 hasConcept C199360897 @default.
- W4317938045 hasConcept C206705377 @default.
- W4317938045 hasConcept C2780282618 @default.
- W4317938045 hasConcept C2780451532 @default.
- W4317938045 hasConcept C41008148 @default.
- W4317938045 hasConcept C77805123 @default.
- W4317938045 hasConcept C90734943 @default.
- W4317938045 hasConceptScore W4317938045C154945302 @default.
- W4317938045 hasConceptScore W4317938045C15744967 @default.
- W4317938045 hasConceptScore W4317938045C162324750 @default.
- W4317938045 hasConceptScore W4317938045C177264268 @default.
- W4317938045 hasConceptScore W4317938045C180747234 @default.
- W4317938045 hasConceptScore W4317938045C187736073 @default.
- W4317938045 hasConceptScore W4317938045C199360897 @default.
- W4317938045 hasConceptScore W4317938045C206705377 @default.
- W4317938045 hasConceptScore W4317938045C2780282618 @default.
- W4317938045 hasConceptScore W4317938045C2780451532 @default.
- W4317938045 hasConceptScore W4317938045C41008148 @default.
- W4317938045 hasConceptScore W4317938045C77805123 @default.
- W4317938045 hasConceptScore W4317938045C90734943 @default.
- W4317938045 hasLocation W43179380451 @default.
- W4317938045 hasLocation W43179380452 @default.
- W4317938045 hasLocation W43179380453 @default.
- W4317938045 hasLocation W43179380454 @default.
- W4317938045 hasLocation W43179380455 @default.
- W4317938045 hasLocation W43179380456 @default.
- W4317938045 hasOpenAccess W4317938045 @default.
- W4317938045 hasPrimaryLocation W43179380451 @default.
- W4317938045 hasRelatedWork W1981987850 @default.
- W4317938045 hasRelatedWork W2006942242 @default.
- W4317938045 hasRelatedWork W2010447301 @default.