Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317988082> ?p ?o ?g. }
- W4317988082 endingPage "2123" @default.
- W4317988082 startingPage "2110" @default.
- W4317988082 abstract "Serverless computing has emerged as a revolutionary model that enables the deployment of applications and services by raising the level of abstraction from the underline resources. Its main functionality is enlightened by the notion of Function-asa-Service (FaaS) as the core means to realize efficient serverless offerings. Following the shift from traditional architectures to microservices -by attaining flexibility, productivity, portability, and performance in industrial-scale IT projects, the serverless model introduces even more fine-grained services, named “nanoservices”, which facilitate required scalability by abstracting the deployment and management of the infrastructure resources. On the application space, advances in big data analysis contribute towards extracting actionable knowledge in various application domains. In this context, approaches for big data analysis aim at exploiting the added value of serverless architectures. To this end, we are presenting an extendable and generalized approach for facilitating the provision of Machine Learning Functions-as-a-Service (MLFaaS). The proposed approach outstrips the classical atomic and standard isolated services by facilitating composite services, i.e., workflows/pipelines of ML tasks, thus enabling the realization of the complete data path functions as required by data scientists. We demonstrate the operation of the proposed approach by modeling a real-world analytics scenario as an ML workflow pipeline and evaluate its performance in terms of performance. Furthermore, we address the challenge of utilizing a function oriented service template recommendation system, by expanding the serverless functional boundaries towards a holistic Quality-of-Service (QoS)-aware service function selection approach based on Artificial Intelligence techniques. These techniques propose the optimal number of functions to be implemented in a pipeline by exploiting the importance of response time as the primary key of the application’s performance." @default.
- W4317988082 created "2023-01-25" @default.
- W4317988082 creator A5020924832 @default.
- W4317988082 creator A5069674161 @default.
- W4317988082 date "2023-09-01" @default.
- W4317988082 modified "2023-10-10" @default.
- W4317988082 title "ML-FaaS: Towards exploiting the serverless paradigm to facilitate Machine Learning Functions as a Service" @default.
- W4317988082 cites W1919216911 @default.
- W4317988082 cites W2015964844 @default.
- W4317988082 cites W2024880014 @default.
- W4317988082 cites W2108587916 @default.
- W4317988082 cites W2148143831 @default.
- W4317988082 cites W2148459868 @default.
- W4317988082 cites W2171816001 @default.
- W4317988082 cites W2230801863 @default.
- W4317988082 cites W2295124130 @default.
- W4317988082 cites W2368566748 @default.
- W4317988082 cites W2519706319 @default.
- W4317988082 cites W2591324491 @default.
- W4317988082 cites W2626970695 @default.
- W4317988082 cites W2734809522 @default.
- W4317988082 cites W2763095368 @default.
- W4317988082 cites W2793630790 @default.
- W4317988082 cites W2799900537 @default.
- W4317988082 cites W2891550401 @default.
- W4317988082 cites W2909514410 @default.
- W4317988082 cites W2910862205 @default.
- W4317988082 cites W2918828872 @default.
- W4317988082 cites W2920834220 @default.
- W4317988082 cites W2934208298 @default.
- W4317988082 cites W2945471755 @default.
- W4317988082 cites W2995419643 @default.
- W4317988082 cites W3013015689 @default.
- W4317988082 cites W3047499212 @default.
- W4317988082 cites W3047528232 @default.
- W4317988082 cites W3118225780 @default.
- W4317988082 cites W3120660324 @default.
- W4317988082 cites W3140348519 @default.
- W4317988082 cites W3157175643 @default.
- W4317988082 cites W3169457558 @default.
- W4317988082 cites W3181392997 @default.
- W4317988082 cites W3215002152 @default.
- W4317988082 cites W4205924332 @default.
- W4317988082 doi "https://doi.org/10.1109/tnsm.2023.3239672" @default.
- W4317988082 hasPublicationYear "2023" @default.
- W4317988082 type Work @default.
- W4317988082 citedByCount "2" @default.
- W4317988082 countsByYear W43179880822023 @default.
- W4317988082 crossrefType "journal-article" @default.
- W4317988082 hasAuthorship W4317988082A5020924832 @default.
- W4317988082 hasAuthorship W4317988082A5069674161 @default.
- W4317988082 hasConcept C105339364 @default.
- W4317988082 hasConcept C111919701 @default.
- W4317988082 hasConcept C115903868 @default.
- W4317988082 hasConcept C120314980 @default.
- W4317988082 hasConcept C124101348 @default.
- W4317988082 hasConcept C136264566 @default.
- W4317988082 hasConcept C151730666 @default.
- W4317988082 hasConcept C154945302 @default.
- W4317988082 hasConcept C162324750 @default.
- W4317988082 hasConcept C177212765 @default.
- W4317988082 hasConcept C2522767166 @default.
- W4317988082 hasConcept C2778505942 @default.
- W4317988082 hasConcept C2779343474 @default.
- W4317988082 hasConcept C2780378061 @default.
- W4317988082 hasConcept C31258907 @default.
- W4317988082 hasConcept C41008148 @default.
- W4317988082 hasConcept C48044578 @default.
- W4317988082 hasConcept C5119721 @default.
- W4317988082 hasConcept C63000827 @default.
- W4317988082 hasConcept C75684735 @default.
- W4317988082 hasConcept C77088390 @default.
- W4317988082 hasConcept C79974875 @default.
- W4317988082 hasConcept C86803240 @default.
- W4317988082 hasConceptScore W4317988082C105339364 @default.
- W4317988082 hasConceptScore W4317988082C111919701 @default.
- W4317988082 hasConceptScore W4317988082C115903868 @default.
- W4317988082 hasConceptScore W4317988082C120314980 @default.
- W4317988082 hasConceptScore W4317988082C124101348 @default.
- W4317988082 hasConceptScore W4317988082C136264566 @default.
- W4317988082 hasConceptScore W4317988082C151730666 @default.
- W4317988082 hasConceptScore W4317988082C154945302 @default.
- W4317988082 hasConceptScore W4317988082C162324750 @default.
- W4317988082 hasConceptScore W4317988082C177212765 @default.
- W4317988082 hasConceptScore W4317988082C2522767166 @default.
- W4317988082 hasConceptScore W4317988082C2778505942 @default.
- W4317988082 hasConceptScore W4317988082C2779343474 @default.
- W4317988082 hasConceptScore W4317988082C2780378061 @default.
- W4317988082 hasConceptScore W4317988082C31258907 @default.
- W4317988082 hasConceptScore W4317988082C41008148 @default.
- W4317988082 hasConceptScore W4317988082C48044578 @default.
- W4317988082 hasConceptScore W4317988082C5119721 @default.
- W4317988082 hasConceptScore W4317988082C63000827 @default.
- W4317988082 hasConceptScore W4317988082C75684735 @default.
- W4317988082 hasConceptScore W4317988082C77088390 @default.
- W4317988082 hasConceptScore W4317988082C79974875 @default.
- W4317988082 hasConceptScore W4317988082C86803240 @default.
- W4317988082 hasFunder F4320331361 @default.