Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318016623> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4318016623 endingPage "074006" @default.
- W4318016623 startingPage "074006" @default.
- W4318016623 abstract "Physics-Informed Neural Networks (PINNs) have a wide range of applications as an alternative to traditional numerical methods in plasma simulation. However, in some specific cases of PINN-based modeling, a well-trained PINN may require tens of thousands of optimizing iterations during training stage for complex modeling and huge neural networks, which is sometimes very time-consuming. In this work, we propose a meta-learning method, namely Meta-PINN, to reduce the training time of PINN-based 1-D arc simulation. In Meta-PINN, the meta network is first trained by a two-loop optimization on various training tasks of plasma modeling, and then used to initialize the PINN-based network for new tasks. We demonstrate the power of Meta-PINN by four cases corresponding to 1-D arc models at different boundary temperatures, arc radii, arc pressures, and gas mixtures. We found that a well-trained meta network can produce good initial weights for PINN-based arc models even at conditions slightly outside of training range. The speed-up in terms of relative L2 error by Meta-PINN ranges from 1.1x to 6.9x in the cases we studied. The results indicate that Meta-PINN is an effective method for accelerating the PINN-based 1-D arc simulation." @default.
- W4318016623 created "2023-01-26" @default.
- W4318016623 creator A5014895866 @default.
- W4318016623 creator A5029941522 @default.
- W4318016623 creator A5050419964 @default.
- W4318016623 date "2023-02-03" @default.
- W4318016623 modified "2023-10-17" @default.
- W4318016623 title "Accelerating physics-informed neural network based 1D arc simulation by meta learning" @default.
- W4318016623 cites W2004477302 @default.
- W4318016623 cites W2762756599 @default.
- W4318016623 cites W2791693092 @default.
- W4318016623 cites W2899283552 @default.
- W4318016623 cites W2959536640 @default.
- W4318016623 cites W2995478911 @default.
- W4318016623 cites W3003922491 @default.
- W4318016623 cites W3010832613 @default.
- W4318016623 cites W3102845444 @default.
- W4318016623 cites W3137474564 @default.
- W4318016623 cites W3152689195 @default.
- W4318016623 cites W3154934604 @default.
- W4318016623 cites W3179444763 @default.
- W4318016623 cites W3181235980 @default.
- W4318016623 cites W3197694049 @default.
- W4318016623 cites W4211155841 @default.
- W4318016623 cites W4283780773 @default.
- W4318016623 doi "https://doi.org/10.1088/1361-6463/acb604" @default.
- W4318016623 hasPublicationYear "2023" @default.
- W4318016623 type Work @default.
- W4318016623 citedByCount "2" @default.
- W4318016623 crossrefType "journal-article" @default.
- W4318016623 hasAuthorship W4318016623A5014895866 @default.
- W4318016623 hasAuthorship W4318016623A5029941522 @default.
- W4318016623 hasAuthorship W4318016623A5050419964 @default.
- W4318016623 hasBestOaLocation W43180166232 @default.
- W4318016623 hasConcept C127413603 @default.
- W4318016623 hasConcept C134306372 @default.
- W4318016623 hasConcept C146978453 @default.
- W4318016623 hasConcept C154945302 @default.
- W4318016623 hasConcept C201995342 @default.
- W4318016623 hasConcept C204323151 @default.
- W4318016623 hasConcept C2780451532 @default.
- W4318016623 hasConcept C2781002164 @default.
- W4318016623 hasConcept C33923547 @default.
- W4318016623 hasConcept C41008148 @default.
- W4318016623 hasConcept C50644808 @default.
- W4318016623 hasConcept C62354387 @default.
- W4318016623 hasConcept C78519656 @default.
- W4318016623 hasConcept C83415579 @default.
- W4318016623 hasConceptScore W4318016623C127413603 @default.
- W4318016623 hasConceptScore W4318016623C134306372 @default.
- W4318016623 hasConceptScore W4318016623C146978453 @default.
- W4318016623 hasConceptScore W4318016623C154945302 @default.
- W4318016623 hasConceptScore W4318016623C201995342 @default.
- W4318016623 hasConceptScore W4318016623C204323151 @default.
- W4318016623 hasConceptScore W4318016623C2780451532 @default.
- W4318016623 hasConceptScore W4318016623C2781002164 @default.
- W4318016623 hasConceptScore W4318016623C33923547 @default.
- W4318016623 hasConceptScore W4318016623C41008148 @default.
- W4318016623 hasConceptScore W4318016623C50644808 @default.
- W4318016623 hasConceptScore W4318016623C62354387 @default.
- W4318016623 hasConceptScore W4318016623C78519656 @default.
- W4318016623 hasConceptScore W4318016623C83415579 @default.
- W4318016623 hasFunder F4320321001 @default.
- W4318016623 hasFunder F4320335787 @default.
- W4318016623 hasIssue "7" @default.
- W4318016623 hasLocation W43180166231 @default.
- W4318016623 hasLocation W43180166232 @default.
- W4318016623 hasOpenAccess W4318016623 @default.
- W4318016623 hasPrimaryLocation W43180166231 @default.
- W4318016623 hasRelatedWork W1967523843 @default.
- W4318016623 hasRelatedWork W2153913439 @default.
- W4318016623 hasRelatedWork W2386387936 @default.
- W4318016623 hasRelatedWork W2389240045 @default.
- W4318016623 hasRelatedWork W3001020386 @default.
- W4318016623 hasRelatedWork W3020638616 @default.
- W4318016623 hasRelatedWork W3107474891 @default.
- W4318016623 hasRelatedWork W3200361725 @default.
- W4318016623 hasRelatedWork W644753246 @default.
- W4318016623 hasRelatedWork W1629725936 @default.
- W4318016623 hasVolume "56" @default.
- W4318016623 isParatext "false" @default.
- W4318016623 isRetracted "false" @default.
- W4318016623 workType "article" @default.