Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318018903> ?p ?o ?g. }
- W4318018903 endingPage "108672" @default.
- W4318018903 startingPage "108672" @default.
- W4318018903 abstract "High-order methods are being recognized as powerful tools for handling scale-resolving simulations over complex geometry. However, several obstacles still block their complete applications to practical engineering problems: a compromise between accuracy and efficiency on mixed-curved meshes, inherent vulnerability to numerical oscillations, and lack of open-source high-performance solvers for researchers. To address these issues, we present Deneb, an open-source high-order accurate numerical solver that enables high-performance scale-resolving simulations on PDE-based flow systems. Deneb uses the physical domain-based modal discontinuous Galerkin (DG) method; thus, it can provide an arbitrary high-order accurate solution on mixed-curved meshes and has the potential for handling polyhedral meshes as well. The direct reconstruction method (DRM) efficiently executes the numerical integration of DG volume and surface integrals without accuracy loss on non-affine elements where mapping functions are high-degree. The resulting DRM-DG method eliminates the severe cost of a quadrature-based approach on mixed-curved meshes. Deneb offers explicit and implicit Runge–Kutta methods as well to achieve high-order accuracy in time. In addition, Krylov subspace methods and preconditioners are available for high-performance linear system solving in parallel. Deneb possesses a strong capability to resolve multi-physical shocks without numerical instabilities with the aid of multi-dimensional limiting and artificial viscosity methods. In particular, the hierarchical multi-dimensional limiting process enables efficient computations of supersonic flows without time-step restriction. The current release of Deneb covers the simulations of hypersonic equilibrium and magneto-hydrodynamic flows as well as compressible Navier–Stokes equations, but it has the potential to solve any PDE-based multi-physical flow systems. Several benchmark problems are presented to highlight Deneb's capability to perform scale-resolving and multi-physical flow simulations. A scalability test is also presented to verify the scaling characteristics of Deneb for high-performance computing. Program title: Deneb CPC library link to program files: https://doi.org/10.17632/723n5r797n.1 Developer's repository link: https://github.com/HojunYouKr/Deneb Licensing provisions: BSD-3-Clause Programming language: C++17 Nature of problem: The physical domain-based modal DG method can achieve the expected order of accuracy with the optimal number of polynomial bases even on non-affine elements. However, the DG method becomes significantly expensive on high-order curved elements when using quadrature rules, blocking its applicability to practical engineering problems. The numerical integration should be much more efficient without compromising accuracy. In addition, the less diffusive nature of high-order methods makes them susceptible to producing spurious numerical oscillations near flow discontinuities, potentially leading to numerical instabilities. Thus, an accurate and robust shock-capturing method is essential to simulate multi-physical flows under compressible regimes. Finally, the solver needs high scalability to perform large-scale computations in parallel. Solution method: DRM is applied to the DG volume and surface integrals to perform efficient numerical integration on non-affine elements without accuracy loss. The resulting method, DRM-DG, provides arbitrary high-order accurate solutions to various PDE-based flow problems on mixed-curved meshes. The solution is also high-order accurate in time due to high-order explicit and implicit Runge–Kutta methods implemented. The external library enables high-performance linear system solving with various preconditioners in parallel. Both multi-dimensional limiting and artificial viscosity methods suppress unwanted subcell oscillations across physical discontinuities. In particular, the limiting methods simulate complex supersonic flows efficiently without time-step restriction. The solver is highly scalable on parallel computing with the aid of non-blocking communications and latency hiding." @default.
- W4318018903 created "2023-01-26" @default.
- W4318018903 creator A5066301127 @default.
- W4318018903 creator A5084156329 @default.
- W4318018903 creator A5088313627 @default.
- W4318018903 date "2023-05-01" @default.
- W4318018903 modified "2023-10-18" @default.
- W4318018903 title "Deneb: An open-source high-performance multi-physical flow solver based on high-order DRM-DG method" @default.
- W4318018903 cites W1908859542 @default.
- W4318018903 cites W1966171361 @default.
- W4318018903 cites W1968345767 @default.
- W4318018903 cites W1972119727 @default.
- W4318018903 cites W1980006566 @default.
- W4318018903 cites W1985144286 @default.
- W4318018903 cites W1990511060 @default.
- W4318018903 cites W2023198396 @default.
- W4318018903 cites W2026700540 @default.
- W4318018903 cites W2031208469 @default.
- W4318018903 cites W2035525708 @default.
- W4318018903 cites W2039115741 @default.
- W4318018903 cites W2057583810 @default.
- W4318018903 cites W2058690914 @default.
- W4318018903 cites W2060997804 @default.
- W4318018903 cites W2063597636 @default.
- W4318018903 cites W2063884077 @default.
- W4318018903 cites W2069365871 @default.
- W4318018903 cites W2070232376 @default.
- W4318018903 cites W2071856446 @default.
- W4318018903 cites W2082134018 @default.
- W4318018903 cites W2094818681 @default.
- W4318018903 cites W2095069475 @default.
- W4318018903 cites W2102295719 @default.
- W4318018903 cites W2106476375 @default.
- W4318018903 cites W2107868963 @default.
- W4318018903 cites W2113283497 @default.
- W4318018903 cites W2116091257 @default.
- W4318018903 cites W2116729868 @default.
- W4318018903 cites W2119097265 @default.
- W4318018903 cites W2127680757 @default.
- W4318018903 cites W2134621008 @default.
- W4318018903 cites W2142058931 @default.
- W4318018903 cites W2148897203 @default.
- W4318018903 cites W2163554784 @default.
- W4318018903 cites W2169030264 @default.
- W4318018903 cites W2206304477 @default.
- W4318018903 cites W2326111608 @default.
- W4318018903 cites W2482240355 @default.
- W4318018903 cites W2593537494 @default.
- W4318018903 cites W2768666336 @default.
- W4318018903 cites W2885517245 @default.
- W4318018903 cites W2891334059 @default.
- W4318018903 cites W2949085903 @default.
- W4318018903 cites W2996005172 @default.
- W4318018903 cites W3010292040 @default.
- W4318018903 cites W3032595401 @default.
- W4318018903 cites W3113299566 @default.
- W4318018903 cites W3131803349 @default.
- W4318018903 cites W3155036733 @default.
- W4318018903 cites W3156506936 @default.
- W4318018903 cites W4238485392 @default.
- W4318018903 cites W4306252015 @default.
- W4318018903 cites W998592885 @default.
- W4318018903 doi "https://doi.org/10.1016/j.cpc.2023.108672" @default.
- W4318018903 hasPublicationYear "2023" @default.
- W4318018903 type Work @default.
- W4318018903 citedByCount "1" @default.
- W4318018903 countsByYear W43180189032023 @default.
- W4318018903 crossrefType "journal-article" @default.
- W4318018903 hasAuthorship W4318018903A5066301127 @default.
- W4318018903 hasAuthorship W4318018903A5084156329 @default.
- W4318018903 hasAuthorship W4318018903A5088313627 @default.
- W4318018903 hasBestOaLocation W43180189031 @default.
- W4318018903 hasConcept C11413529 @default.
- W4318018903 hasConcept C121332964 @default.
- W4318018903 hasConcept C121684516 @default.
- W4318018903 hasConcept C126255220 @default.
- W4318018903 hasConcept C131053463 @default.
- W4318018903 hasConcept C135628077 @default.
- W4318018903 hasConcept C147060835 @default.
- W4318018903 hasConcept C159694833 @default.
- W4318018903 hasConcept C2778770139 @default.
- W4318018903 hasConcept C28826006 @default.
- W4318018903 hasConcept C31487907 @default.
- W4318018903 hasConcept C33923547 @default.
- W4318018903 hasConcept C41008148 @default.
- W4318018903 hasConcept C459310 @default.
- W4318018903 hasConcept C92244383 @default.
- W4318018903 hasConcept C97355855 @default.
- W4318018903 hasConceptScore W4318018903C11413529 @default.
- W4318018903 hasConceptScore W4318018903C121332964 @default.
- W4318018903 hasConceptScore W4318018903C121684516 @default.
- W4318018903 hasConceptScore W4318018903C126255220 @default.
- W4318018903 hasConceptScore W4318018903C131053463 @default.
- W4318018903 hasConceptScore W4318018903C135628077 @default.
- W4318018903 hasConceptScore W4318018903C147060835 @default.
- W4318018903 hasConceptScore W4318018903C159694833 @default.
- W4318018903 hasConceptScore W4318018903C2778770139 @default.
- W4318018903 hasConceptScore W4318018903C28826006 @default.