Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318020407> ?p ?o ?g. }
- W4318020407 endingPage "115290" @default.
- W4318020407 startingPage "115290" @default.
- W4318020407 abstract "A nonmodel and output-only-based framework incorporating an Auto-Regressive model and roof absolute acceleration response are hired in this study to compute a robust wavelet-based damage-sensitive feature (rDSF) and estimate engineering demand parameters (EDPs) of buildings with eccentrically braced frames (EBFs). A large database is recruited to estimate the peak and residual story drift ratios and peak floor absolute accelerations as EDPs. The database comprises cmorfb-fc wavelet-based rDSF, number of stories, building heights, and EDPs of the 4- and 8-story EBF archetypes, resulting from 44 far-field ground motions through incremental dynamic analysis. The capability of both the closed-form equations and machine learning (ML) techniques is investigated to estimate the EDPs. The predictive equations are constructed using ordinary least squares linear regression, Symbolic and Bayesian regressions. To have a more accurate estimation of EDPs, 12 renowned ML-based regression algorithms are also implemented for training, validation, and test datasets. Sensitivity analysis using box-whisker plots on the validation dataset shows that Extreme Gradient Boosted Trees (ExGBT) ensemble has a remarkable efficiency to predict the EDPs and leads to the highest 10-fold correlation coefficient and the lowest root-mean-square error. Moreover, ExGBT has the lowest median absolute relative deviation in different damage states and consequently is selected as the best surrogate algorithm. The predicted EDPs can be further exploited to map rDSF-based fragility curves, a conditional probability at each defined damage state given the value of rDSF. The comparative results for the test data approve that the predicted fragility curves approximately match with those obtained from observed data and can be used for early decision-making in emergency operations." @default.
- W4318020407 created "2023-01-26" @default.
- W4318020407 creator A5004616075 @default.
- W4318020407 creator A5055404132 @default.
- W4318020407 creator A5089759262 @default.
- W4318020407 date "2023-03-01" @default.
- W4318020407 modified "2023-10-17" @default.
- W4318020407 title "Rapid seismic fragility curves assessment of eccentrically braced frames through an output-only nonmodel-based procedure and machine learning techniques" @default.
- W4318020407 cites W1678356000 @default.
- W4318020407 cites W1939712313 @default.
- W4318020407 cites W1958963630 @default.
- W4318020407 cites W1963777170 @default.
- W4318020407 cites W1965024935 @default.
- W4318020407 cites W1967320885 @default.
- W4318020407 cites W1991054868 @default.
- W4318020407 cites W1993939483 @default.
- W4318020407 cites W2000826576 @default.
- W4318020407 cites W2017940924 @default.
- W4318020407 cites W2039638270 @default.
- W4318020407 cites W2047025552 @default.
- W4318020407 cites W2047058995 @default.
- W4318020407 cites W2051518659 @default.
- W4318020407 cites W2053074466 @default.
- W4318020407 cites W2061463213 @default.
- W4318020407 cites W2074745982 @default.
- W4318020407 cites W2083501658 @default.
- W4318020407 cites W2086987832 @default.
- W4318020407 cites W2092699365 @default.
- W4318020407 cites W2095643707 @default.
- W4318020407 cites W2115508435 @default.
- W4318020407 cites W2117132787 @default.
- W4318020407 cites W2122111042 @default.
- W4318020407 cites W2128601131 @default.
- W4318020407 cites W2129451521 @default.
- W4318020407 cites W2138795702 @default.
- W4318020407 cites W2150680174 @default.
- W4318020407 cites W2165608536 @default.
- W4318020407 cites W2493977830 @default.
- W4318020407 cites W2507155904 @default.
- W4318020407 cites W2582506982 @default.
- W4318020407 cites W2588666581 @default.
- W4318020407 cites W2607466176 @default.
- W4318020407 cites W2754419264 @default.
- W4318020407 cites W2767440102 @default.
- W4318020407 cites W2775763120 @default.
- W4318020407 cites W2780780106 @default.
- W4318020407 cites W2781133456 @default.
- W4318020407 cites W2789281371 @default.
- W4318020407 cites W2809866340 @default.
- W4318020407 cites W2891346799 @default.
- W4318020407 cites W2897155495 @default.
- W4318020407 cites W2899383194 @default.
- W4318020407 cites W2911454750 @default.
- W4318020407 cites W2911964244 @default.
- W4318020407 cites W2913820344 @default.
- W4318020407 cites W2915242549 @default.
- W4318020407 cites W2924904487 @default.
- W4318020407 cites W2937794626 @default.
- W4318020407 cites W2940841169 @default.
- W4318020407 cites W2947787578 @default.
- W4318020407 cites W2950504949 @default.
- W4318020407 cites W2963587403 @default.
- W4318020407 cites W2967551316 @default.
- W4318020407 cites W2981979832 @default.
- W4318020407 cites W2996987380 @default.
- W4318020407 cites W3002608457 @default.
- W4318020407 cites W3004836947 @default.
- W4318020407 cites W3007754802 @default.
- W4318020407 cites W3008116338 @default.
- W4318020407 cites W3008164632 @default.
- W4318020407 cites W3018966198 @default.
- W4318020407 cites W3020067524 @default.
- W4318020407 cites W3035790064 @default.
- W4318020407 cites W3038976547 @default.
- W4318020407 cites W3046577225 @default.
- W4318020407 cites W3046705597 @default.
- W4318020407 cites W3047153819 @default.
- W4318020407 cites W3048422714 @default.
- W4318020407 cites W3083394056 @default.
- W4318020407 cites W3089246515 @default.
- W4318020407 cites W3090386703 @default.
- W4318020407 cites W3094002206 @default.
- W4318020407 cites W3102476541 @default.
- W4318020407 cites W3125076201 @default.
- W4318020407 cites W3131046868 @default.
- W4318020407 cites W3134782393 @default.
- W4318020407 cites W3136631225 @default.
- W4318020407 cites W3143416557 @default.
- W4318020407 cites W3145076339 @default.
- W4318020407 cites W3158466250 @default.
- W4318020407 cites W3160499567 @default.
- W4318020407 cites W3184306506 @default.
- W4318020407 cites W3184673931 @default.
- W4318020407 cites W3193914348 @default.
- W4318020407 cites W3198148990 @default.
- W4318020407 cites W3199683159 @default.
- W4318020407 cites W3202687277 @default.
- W4318020407 cites W3209059351 @default.