Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318066509> ?p ?o ?g. }
- W4318066509 endingPage "884" @default.
- W4318066509 startingPage "873" @default.
- W4318066509 abstract "Global warming is one of the most challenging issues of the current era. Revolutions in industrial, Information and Communication Technology (ICT) sectors significantly contribute in increasing global warming. Green House Gases (GHG) emissions from industrial, transportation, power and other sectors cause environmental pollution, which results in climate degradation. Environmental experts are well aware of the disastrous consequences of excessive global warming; therefore, several decarbonization strategies are developed and practiced in the recent past. A widely practiced decarbonization strategy is replacing fossil fuels by Renewable Energy Sources (RES) in the power systems. Electricity consumers are also encouraged to shift their consumption load to low carbon emissions' time periods. For accomplishing this task, an estimation of future carbon emissions is required. In this paper, power system's carbon emissions are predicted accurately with the help of a novel and an efficient forecasting model. The proposed model comprises of Spearman Correlation Analysis (SCA) and Improved Shallow Denoising Autoencoder (ISDAE) based feature engineering. Forecasting is performed through an Improved Particle Swarm Optimization (IPSO) based Deep Neural Network (DNN) forecaster. In addition, a comprehensive quantification analysis is also presented in this paper. The impacts of RES integration level on the electricity price, consumption cost and Greenhouse Gases (GHG) emissions are quantified descriptively and graphically. Performance of the proposed forecasting model is evaluated by Normalized Root Mean Square Error (NRMSE), Mean Absolute Error (MAE) and Mean Square Error (MSE). Simulation results prove that the proposed model outperforms Support Vector Machine (SVM) and Multiple Linear Regression (MLR) based carbon emission forecasting models in terms of forecasting accuracy." @default.
- W4318066509 created "2023-01-26" @default.
- W4318066509 creator A5009622049 @default.
- W4318066509 creator A5055380996 @default.
- W4318066509 date "2023-01-26" @default.
- W4318066509 modified "2023-09-30" @default.
- W4318066509 title "Deep learning based carbon emissions forecasting and renewable energy's impact quantification" @default.
- W4318066509 cites W1988725199 @default.
- W4318066509 cites W2020091852 @default.
- W4318066509 cites W2048461487 @default.
- W4318066509 cites W2111072639 @default.
- W4318066509 cites W2152195021 @default.
- W4318066509 cites W2181614756 @default.
- W4318066509 cites W2793350103 @default.
- W4318066509 cites W2806168267 @default.
- W4318066509 cites W2884501304 @default.
- W4318066509 cites W2885341842 @default.
- W4318066509 cites W2894549911 @default.
- W4318066509 cites W2907298965 @default.
- W4318066509 cites W2920837960 @default.
- W4318066509 cites W2921061637 @default.
- W4318066509 cites W2947654534 @default.
- W4318066509 cites W2967764887 @default.
- W4318066509 cites W2982127124 @default.
- W4318066509 cites W2990474957 @default.
- W4318066509 cites W2995422588 @default.
- W4318066509 cites W2996549886 @default.
- W4318066509 cites W2997949108 @default.
- W4318066509 cites W3001912317 @default.
- W4318066509 cites W3008915080 @default.
- W4318066509 cites W3010595340 @default.
- W4318066509 cites W3021541846 @default.
- W4318066509 cites W3092568511 @default.
- W4318066509 cites W3095646616 @default.
- W4318066509 cites W3119027854 @default.
- W4318066509 cites W4248791607 @default.
- W4318066509 doi "https://doi.org/10.1049/rpg2.12641" @default.
- W4318066509 hasPublicationYear "2023" @default.
- W4318066509 type Work @default.
- W4318066509 citedByCount "0" @default.
- W4318066509 crossrefType "journal-article" @default.
- W4318066509 hasAuthorship W4318066509A5009622049 @default.
- W4318066509 hasAuthorship W4318066509A5055380996 @default.
- W4318066509 hasBestOaLocation W43180665091 @default.
- W4318066509 hasConcept C105795698 @default.
- W4318066509 hasConcept C115343472 @default.
- W4318066509 hasConcept C119599485 @default.
- W4318066509 hasConcept C119857082 @default.
- W4318066509 hasConcept C127413603 @default.
- W4318066509 hasConcept C132651083 @default.
- W4318066509 hasConcept C134560507 @default.
- W4318066509 hasConcept C139945424 @default.
- W4318066509 hasConcept C150217764 @default.
- W4318066509 hasConcept C162324750 @default.
- W4318066509 hasConcept C188573790 @default.
- W4318066509 hasConcept C18903297 @default.
- W4318066509 hasConcept C206658404 @default.
- W4318066509 hasConcept C33923547 @default.
- W4318066509 hasConcept C39432304 @default.
- W4318066509 hasConcept C41008148 @default.
- W4318066509 hasConcept C47737302 @default.
- W4318066509 hasConcept C50644808 @default.
- W4318066509 hasConcept C548081761 @default.
- W4318066509 hasConcept C68189081 @default.
- W4318066509 hasConcept C85617194 @default.
- W4318066509 hasConcept C86803240 @default.
- W4318066509 hasConceptScore W4318066509C105795698 @default.
- W4318066509 hasConceptScore W4318066509C115343472 @default.
- W4318066509 hasConceptScore W4318066509C119599485 @default.
- W4318066509 hasConceptScore W4318066509C119857082 @default.
- W4318066509 hasConceptScore W4318066509C127413603 @default.
- W4318066509 hasConceptScore W4318066509C132651083 @default.
- W4318066509 hasConceptScore W4318066509C134560507 @default.
- W4318066509 hasConceptScore W4318066509C139945424 @default.
- W4318066509 hasConceptScore W4318066509C150217764 @default.
- W4318066509 hasConceptScore W4318066509C162324750 @default.
- W4318066509 hasConceptScore W4318066509C188573790 @default.
- W4318066509 hasConceptScore W4318066509C18903297 @default.
- W4318066509 hasConceptScore W4318066509C206658404 @default.
- W4318066509 hasConceptScore W4318066509C33923547 @default.
- W4318066509 hasConceptScore W4318066509C39432304 @default.
- W4318066509 hasConceptScore W4318066509C41008148 @default.
- W4318066509 hasConceptScore W4318066509C47737302 @default.
- W4318066509 hasConceptScore W4318066509C50644808 @default.
- W4318066509 hasConceptScore W4318066509C548081761 @default.
- W4318066509 hasConceptScore W4318066509C68189081 @default.
- W4318066509 hasConceptScore W4318066509C85617194 @default.
- W4318066509 hasConceptScore W4318066509C86803240 @default.
- W4318066509 hasIssue "4" @default.
- W4318066509 hasLocation W43180665091 @default.
- W4318066509 hasOpenAccess W4318066509 @default.
- W4318066509 hasPrimaryLocation W43180665091 @default.
- W4318066509 hasRelatedWork W1531841317 @default.
- W4318066509 hasRelatedWork W2059652129 @default.
- W4318066509 hasRelatedWork W2375246106 @default.
- W4318066509 hasRelatedWork W2778123278 @default.
- W4318066509 hasRelatedWork W2794180445 @default.
- W4318066509 hasRelatedWork W2807954395 @default.