Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318165775> ?p ?o ?g. }
- W4318165775 endingPage "4414" @default.
- W4318165775 startingPage "4399" @default.
- W4318165775 abstract "Background MR scans used in radiotherapy can be partially truncated due to the limited field of view (FOV), affecting dose calculation accuracy in MR-based radiation treatment planning. Purpose We proposed a novel Compensation-cycleGAN (Comp-cycleGAN) by modifying the cycle-consistent generative adversarial network (cycleGAN), to simultaneously create synthetic CT (sCT) images and compensate the missing anatomy from the truncated MR images. Methods Computed tomography (CT) and T1 MR images with complete anatomy of 79 head-and-neck patients were used for this study. The original MR images were manually cropped 10–25 mm off at the posterior head to simulate clinically truncated MR images. Fifteen patients were randomly chosen for testing and the rest of the patients were used for model training and validation. Both the truncated and original MR images were used in the Comp-cycleGAN training stage, which enables the model to compensate for the missing anatomy by learning the relationship between the truncation and known structures. After the model was trained, sCT images with complete anatomy can be generated by feeding only the truncated MR images into the model. In addition, the external body contours acquired from the CT images with full anatomy could be an optional input for the proposed method to leverage the additional information of the actual body shape for each test patient. The mean absolute error (MAE) of Hounsfield units (HU), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were calculated between sCT and real CT images to quantify the overall sCT performance. To further evaluate the shape accuracy, we generated the external body contours for sCT and original MR images with full anatomy. The Dice similarity coefficient (DSC) and mean surface distance (MSD) were calculated between the body contours of sCT and original MR images for the truncation region to assess the anatomy compensation accuracy. Results The average MAE, PSNR, and SSIM calculated over test patients were 93.1 HU/91.3 HU, 26.5 dB/27.4 dB, and 0.94/0.94 for the proposed Comp-cycleGAN models trained without/with body-contour information, respectively. These results were comparable with those obtained from the cycleGAN model which is trained and tested on full-anatomy MR images, indicating the high quality of the sCT generated from truncated MR images by the proposed method. Within the truncated region, the mean DSC and MSD were 0.85/0.89 and 1.3/0.7 mm for the proposed Comp-cycleGAN models trained without/with body contour information, demonstrating good performance in compensating the truncated anatomy. Conclusions We developed a novel Comp-cycleGAN model that can effectively create sCT with complete anatomy compensation from truncated MR images, which could potentially benefit the MRI-based treatment planning." @default.
- W4318165775 created "2023-01-27" @default.
- W4318165775 creator A5001478588 @default.
- W4318165775 creator A5005673125 @default.
- W4318165775 creator A5006822602 @default.
- W4318165775 creator A5019390915 @default.
- W4318165775 creator A5021471823 @default.
- W4318165775 creator A5040455603 @default.
- W4318165775 creator A5043471963 @default.
- W4318165775 creator A5065513121 @default.
- W4318165775 creator A5070761099 @default.
- W4318165775 creator A5086052710 @default.
- W4318165775 date "2023-02-04" @default.
- W4318165775 modified "2023-09-30" @default.
- W4318165775 title "Compensation cycle consistent generative adversarial networks (Comp‐GAN) for synthetic CT generation from MR scans with truncated anatomy" @default.
- W4318165775 cites W1558579465 @default.
- W4318165775 cites W1822713087 @default.
- W4318165775 cites W1859655790 @default.
- W4318165775 cites W1901129140 @default.
- W4318165775 cites W2003933915 @default.
- W4318165775 cites W2005508273 @default.
- W4318165775 cites W2006608715 @default.
- W4318165775 cites W2008399655 @default.
- W4318165775 cites W2044967973 @default.
- W4318165775 cites W2080858163 @default.
- W4318165775 cites W2081420220 @default.
- W4318165775 cites W2132264805 @default.
- W4318165775 cites W2132411814 @default.
- W4318165775 cites W2132654217 @default.
- W4318165775 cites W2166485554 @default.
- W4318165775 cites W2208340121 @default.
- W4318165775 cites W2418786089 @default.
- W4318165775 cites W2493869572 @default.
- W4318165775 cites W2523468284 @default.
- W4318165775 cites W2580163862 @default.
- W4318165775 cites W2597156741 @default.
- W4318165775 cites W2613483135 @default.
- W4318165775 cites W2698963361 @default.
- W4318165775 cites W2745006834 @default.
- W4318165775 cites W2805992239 @default.
- W4318165775 cites W2808312419 @default.
- W4318165775 cites W2809685501 @default.
- W4318165775 cites W2930910485 @default.
- W4318165775 cites W2935787471 @default.
- W4318165775 cites W2945263066 @default.
- W4318165775 cites W2949576325 @default.
- W4318165775 cites W2953138420 @default.
- W4318165775 cites W2962793481 @default.
- W4318165775 cites W2963073614 @default.
- W4318165775 cites W2971604258 @default.
- W4318165775 cites W2978841311 @default.
- W4318165775 cites W2982718246 @default.
- W4318165775 cites W3005162081 @default.
- W4318165775 cites W3013025543 @default.
- W4318165775 cites W3023430735 @default.
- W4318165775 cites W3038260786 @default.
- W4318165775 cites W3048439504 @default.
- W4318165775 cites W3088358581 @default.
- W4318165775 cites W3092871161 @default.
- W4318165775 cites W3101123465 @default.
- W4318165775 cites W3138895906 @default.
- W4318165775 cites W3174832365 @default.
- W4318165775 cites W3196990271 @default.
- W4318165775 cites W3215987108 @default.
- W4318165775 doi "https://doi.org/10.1002/mp.16246" @default.
- W4318165775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36698291" @default.
- W4318165775 hasPublicationYear "2023" @default.
- W4318165775 type Work @default.
- W4318165775 citedByCount "1" @default.
- W4318165775 countsByYear W43181657752023 @default.
- W4318165775 crossrefType "journal-article" @default.
- W4318165775 hasAuthorship W4318165775A5001478588 @default.
- W4318165775 hasAuthorship W4318165775A5005673125 @default.
- W4318165775 hasAuthorship W4318165775A5006822602 @default.
- W4318165775 hasAuthorship W4318165775A5019390915 @default.
- W4318165775 hasAuthorship W4318165775A5021471823 @default.
- W4318165775 hasAuthorship W4318165775A5040455603 @default.
- W4318165775 hasAuthorship W4318165775A5043471963 @default.
- W4318165775 hasAuthorship W4318165775A5065513121 @default.
- W4318165775 hasAuthorship W4318165775A5070761099 @default.
- W4318165775 hasAuthorship W4318165775A5086052710 @default.
- W4318165775 hasConcept C108583219 @default.
- W4318165775 hasConcept C115961682 @default.
- W4318165775 hasConcept C126838900 @default.
- W4318165775 hasConcept C153180895 @default.
- W4318165775 hasConcept C154945302 @default.
- W4318165775 hasConcept C166704113 @default.
- W4318165775 hasConcept C187954543 @default.
- W4318165775 hasConcept C2988773926 @default.
- W4318165775 hasConcept C2989005 @default.
- W4318165775 hasConcept C31972630 @default.
- W4318165775 hasConcept C41008148 @default.
- W4318165775 hasConcept C54170458 @default.
- W4318165775 hasConcept C544519230 @default.
- W4318165775 hasConcept C71924100 @default.
- W4318165775 hasConceptScore W4318165775C108583219 @default.
- W4318165775 hasConceptScore W4318165775C115961682 @default.
- W4318165775 hasConceptScore W4318165775C126838900 @default.