Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318206819> ?p ?o ?g. }
- W4318206819 endingPage "720" @default.
- W4318206819 startingPage "720" @default.
- W4318206819 abstract "One of the United Nations (UN) Sustainable Development Goals is climate action (SDG-13), and wildfire is among the catastrophic events that both impact climate change and are aggravated by it. In Australia and other countries, large-scale wildfires have dramatically grown in frequency and size in recent years. These fires threaten the world’s forests and urban woods, cause enormous environmental and property damage, and quite often result in fatalities. As a result of their increasing frequency, there is an ongoing debate over how to handle catastrophic wildfires and mitigate their social, economic, and environmental repercussions. Effective prevention, early warning, and response strategies must be well-planned and carefully coordinated to minimise harmful consequences to people and the environment. Rapid advancements in remote sensing technologies such as ground-based, aerial surveillance vehicle-based, and satellite-based systems have been used for efficient wildfire surveillance. This study focuses on the application of space-borne technology for very accurate fire detection under challenging conditions. Due to the significant advances in artificial intelligence (AI) techniques in recent years, numerous studies have previously been conducted to examine how AI might be applied in various situations. As a result of its special physical and operational requirements, spaceflight has emerged as one of the most challenging application fields. This work contains a feasibility study as well as a model and scenario prototype for a satellite AI system. With the intention of swiftly generating alerts and enabling immediate actions, the detection of wildfires has been studied with reference to the Australian events that occurred in December 2019. Convolutional neural networks (CNNs) were developed, trained, and used from the ground up to detect wildfires while also adjusting their complexity to meet onboard implementation requirements for trusted autonomous satellite operations (TASO). The capability of a 1-dimensional convolution neural network (1-DCNN) to classify wildfires is demonstrated in this research and the results are assessed against those reported in the literature. In order to enable autonomous onboard data processing, various hardware accelerators were considered and evaluated for onboard implementation. The trained model was then implemented in the following: Intel Movidius NCS-2 and Nvidia Jetson Nano and Nvidia Jetson TX2. Using the selected onboard hardware, the developed model was then put into practice and analysis was carried out. The results were positive and in favour of using the technology that has been proposed for onboard data processing to enable TASO on future missions. The findings indicate that data processing onboard can be very beneficial in disaster management and climate change mitigation by facilitating the generation of timely alerts for users and by enabling rapid and appropriate responses." @default.
- W4318206819 created "2023-01-27" @default.
- W4318206819 creator A5001402094 @default.
- W4318206819 creator A5006039286 @default.
- W4318206819 creator A5052222410 @default.
- W4318206819 creator A5054958855 @default.
- W4318206819 creator A5066495411 @default.
- W4318206819 creator A5067834094 @default.
- W4318206819 creator A5071500048 @default.
- W4318206819 date "2023-01-26" @default.
- W4318206819 modified "2023-10-11" @default.
- W4318206819 title "Autonomous Satellite Wildfire Detection Using Hyperspectral Imagery and Neural Networks: A Case Study on Australian Wildfire" @default.
- W4318206819 cites W1490218137 @default.
- W4318206819 cites W1521436688 @default.
- W4318206819 cites W1531419578 @default.
- W4318206819 cites W1964459232 @default.
- W4318206819 cites W1980422153 @default.
- W4318206819 cites W1982846260 @default.
- W4318206819 cites W1990713700 @default.
- W4318206819 cites W2001905137 @default.
- W4318206819 cites W2010960730 @default.
- W4318206819 cites W2021609373 @default.
- W4318206819 cites W2034484606 @default.
- W4318206819 cites W2071666512 @default.
- W4318206819 cites W2093932908 @default.
- W4318206819 cites W2094723358 @default.
- W4318206819 cites W2107205575 @default.
- W4318206819 cites W2791930881 @default.
- W4318206819 cites W2792010672 @default.
- W4318206819 cites W2797752055 @default.
- W4318206819 cites W2901876960 @default.
- W4318206819 cites W2944288649 @default.
- W4318206819 cites W2969915407 @default.
- W4318206819 cites W2973636554 @default.
- W4318206819 cites W2987675756 @default.
- W4318206819 cites W3000476340 @default.
- W4318206819 cites W3046289513 @default.
- W4318206819 cites W3092358196 @default.
- W4318206819 cites W3100733145 @default.
- W4318206819 cites W3102342444 @default.
- W4318206819 cites W3113175648 @default.
- W4318206819 cites W3141129286 @default.
- W4318206819 cites W3165629794 @default.
- W4318206819 cites W3174812001 @default.
- W4318206819 cites W3175664613 @default.
- W4318206819 cites W3184910349 @default.
- W4318206819 cites W3197607061 @default.
- W4318206819 cites W3205648935 @default.
- W4318206819 cites W3216834857 @default.
- W4318206819 cites W3217605701 @default.
- W4318206819 cites W4220663224 @default.
- W4318206819 cites W4250017148 @default.
- W4318206819 cites W4252346693 @default.
- W4318206819 cites W4296928277 @default.
- W4318206819 cites W4310874881 @default.
- W4318206819 cites W4312053865 @default.
- W4318206819 cites W4312381639 @default.
- W4318206819 cites W4312831487 @default.
- W4318206819 cites W4312879760 @default.
- W4318206819 cites W2959432189 @default.
- W4318206819 doi "https://doi.org/10.3390/rs15030720" @default.
- W4318206819 hasPublicationYear "2023" @default.
- W4318206819 type Work @default.
- W4318206819 citedByCount "11" @default.
- W4318206819 countsByYear W43182068192023 @default.
- W4318206819 crossrefType "journal-article" @default.
- W4318206819 hasAuthorship W4318206819A5001402094 @default.
- W4318206819 hasAuthorship W4318206819A5006039286 @default.
- W4318206819 hasAuthorship W4318206819A5052222410 @default.
- W4318206819 hasAuthorship W4318206819A5054958855 @default.
- W4318206819 hasAuthorship W4318206819A5066495411 @default.
- W4318206819 hasAuthorship W4318206819A5067834094 @default.
- W4318206819 hasAuthorship W4318206819A5071500048 @default.
- W4318206819 hasBestOaLocation W43182068191 @default.
- W4318206819 hasConcept C107826830 @default.
- W4318206819 hasConcept C132651083 @default.
- W4318206819 hasConcept C159078339 @default.
- W4318206819 hasConcept C18903297 @default.
- W4318206819 hasConcept C205649164 @default.
- W4318206819 hasConcept C29825287 @default.
- W4318206819 hasConcept C39432304 @default.
- W4318206819 hasConcept C41008148 @default.
- W4318206819 hasConcept C62649853 @default.
- W4318206819 hasConcept C76155785 @default.
- W4318206819 hasConcept C86803240 @default.
- W4318206819 hasConcept C91375879 @default.
- W4318206819 hasConceptScore W4318206819C107826830 @default.
- W4318206819 hasConceptScore W4318206819C132651083 @default.
- W4318206819 hasConceptScore W4318206819C159078339 @default.
- W4318206819 hasConceptScore W4318206819C18903297 @default.
- W4318206819 hasConceptScore W4318206819C205649164 @default.
- W4318206819 hasConceptScore W4318206819C29825287 @default.
- W4318206819 hasConceptScore W4318206819C39432304 @default.
- W4318206819 hasConceptScore W4318206819C41008148 @default.
- W4318206819 hasConceptScore W4318206819C62649853 @default.
- W4318206819 hasConceptScore W4318206819C76155785 @default.
- W4318206819 hasConceptScore W4318206819C86803240 @default.
- W4318206819 hasConceptScore W4318206819C91375879 @default.