Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318213610> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4318213610 endingPage "210" @default.
- W4318213610 startingPage "200" @default.
- W4318213610 abstract "Atrial Fibrillation (AF) is the most common cardiac arrhythmia, and it is associated with an increased risk of embolic stroke. It is known that AF-related thrombus formation occurs predominantly in the left atrial appendage (LAA). However, it is still unknown the structural and functional characteristics of the left atria (LA) that promote low velocities and stagnated blood flow, thus a high risk of thrombogenesis. In this work, we investigated morphological and in-silico haemodynamic indices of the LA and LAA with unsupervised machine learning (ML) techniques, to identify the most relevant features that could subsequently be used to generate thrombus prediction models. A fully automatic pipeline was implemented to extract multiple morphological parameters from a 3D mesh of a LA. Morphological parameters were then combined with particle flow parameters from in-silico fluid simulations. Unsupervised multiple kernel learning (MKL) was used for dimensionality reduction, resulting in a latent space positioning patients based on feature similarity. Clustering applied to the MKL output space estimated clusters with different proportion of thrombus cases. The cluster with the highest risk of thrombus formation was characterised by high values of LAA height, tortuosity and ostium perimeter, as well as total number of flow particles in the LAA and low angle between the LAA and the left superior pulmonary vein, proving the usefulness of unsupervised ML techniques to extract knowledge from the data, and early identify AF patients at higher risk of thrombus formation." @default.
- W4318213610 created "2023-01-27" @default.
- W4318213610 creator A5017449661 @default.
- W4318213610 creator A5026485672 @default.
- W4318213610 creator A5031510254 @default.
- W4318213610 creator A5048454229 @default.
- W4318213610 creator A5070013751 @default.
- W4318213610 creator A5077843387 @default.
- W4318213610 creator A5078206222 @default.
- W4318213610 creator A5082296932 @default.
- W4318213610 creator A5083006635 @default.
- W4318213610 creator A5087067526 @default.
- W4318213610 date "2022-01-01" @default.
- W4318213610 modified "2023-10-18" @default.
- W4318213610 title "Unsupervised Machine Learning Exploration of Morphological and Haemodynamic Indices to Predict Thrombus Formation in the Left Atrial Appendage" @default.
- W4318213610 cites W2072849746 @default.
- W4318213610 cites W2090559572 @default.
- W4318213610 cites W2121767516 @default.
- W4318213610 cites W2123312990 @default.
- W4318213610 cites W2147797899 @default.
- W4318213610 cites W2419187253 @default.
- W4318213610 cites W2801681796 @default.
- W4318213610 cites W2900563742 @default.
- W4318213610 cites W2903819949 @default.
- W4318213610 cites W2914401841 @default.
- W4318213610 cites W2951112563 @default.
- W4318213610 cites W2951528890 @default.
- W4318213610 cites W3003790584 @default.
- W4318213610 cites W3137095766 @default.
- W4318213610 cites W3175229190 @default.
- W4318213610 cites W3201856182 @default.
- W4318213610 cites W4220887010 @default.
- W4318213610 cites W4220931039 @default.
- W4318213610 doi "https://doi.org/10.1007/978-3-031-23443-9_19" @default.
- W4318213610 hasPublicationYear "2022" @default.
- W4318213610 type Work @default.
- W4318213610 citedByCount "0" @default.
- W4318213610 crossrefType "book-chapter" @default.
- W4318213610 hasAuthorship W4318213610A5017449661 @default.
- W4318213610 hasAuthorship W4318213610A5026485672 @default.
- W4318213610 hasAuthorship W4318213610A5031510254 @default.
- W4318213610 hasAuthorship W4318213610A5048454229 @default.
- W4318213610 hasAuthorship W4318213610A5070013751 @default.
- W4318213610 hasAuthorship W4318213610A5077843387 @default.
- W4318213610 hasAuthorship W4318213610A5078206222 @default.
- W4318213610 hasAuthorship W4318213610A5082296932 @default.
- W4318213610 hasAuthorship W4318213610A5083006635 @default.
- W4318213610 hasAuthorship W4318213610A5087067526 @default.
- W4318213610 hasConcept C126322002 @default.
- W4318213610 hasConcept C153180895 @default.
- W4318213610 hasConcept C154945302 @default.
- W4318213610 hasConcept C159985019 @default.
- W4318213610 hasConcept C164705383 @default.
- W4318213610 hasConcept C178853913 @default.
- W4318213610 hasConcept C185250623 @default.
- W4318213610 hasConcept C192562407 @default.
- W4318213610 hasConcept C2778930955 @default.
- W4318213610 hasConcept C2779161974 @default.
- W4318213610 hasConcept C2781362458 @default.
- W4318213610 hasConcept C41008148 @default.
- W4318213610 hasConcept C6648577 @default.
- W4318213610 hasConcept C71924100 @default.
- W4318213610 hasConcept C8038995 @default.
- W4318213610 hasConceptScore W4318213610C126322002 @default.
- W4318213610 hasConceptScore W4318213610C153180895 @default.
- W4318213610 hasConceptScore W4318213610C154945302 @default.
- W4318213610 hasConceptScore W4318213610C159985019 @default.
- W4318213610 hasConceptScore W4318213610C164705383 @default.
- W4318213610 hasConceptScore W4318213610C178853913 @default.
- W4318213610 hasConceptScore W4318213610C185250623 @default.
- W4318213610 hasConceptScore W4318213610C192562407 @default.
- W4318213610 hasConceptScore W4318213610C2778930955 @default.
- W4318213610 hasConceptScore W4318213610C2779161974 @default.
- W4318213610 hasConceptScore W4318213610C2781362458 @default.
- W4318213610 hasConceptScore W4318213610C41008148 @default.
- W4318213610 hasConceptScore W4318213610C6648577 @default.
- W4318213610 hasConceptScore W4318213610C71924100 @default.
- W4318213610 hasConceptScore W4318213610C8038995 @default.
- W4318213610 hasLocation W43182136101 @default.
- W4318213610 hasOpenAccess W4318213610 @default.
- W4318213610 hasPrimaryLocation W43182136101 @default.
- W4318213610 hasRelatedWork W1575229716 @default.
- W4318213610 hasRelatedWork W2039515889 @default.
- W4318213610 hasRelatedWork W2048824205 @default.
- W4318213610 hasRelatedWork W2053292521 @default.
- W4318213610 hasRelatedWork W2096784960 @default.
- W4318213610 hasRelatedWork W2159201250 @default.
- W4318213610 hasRelatedWork W2323255267 @default.
- W4318213610 hasRelatedWork W2896573768 @default.
- W4318213610 hasRelatedWork W3041109162 @default.
- W4318213610 hasRelatedWork W4366549996 @default.
- W4318213610 isParatext "false" @default.
- W4318213610 isRetracted "false" @default.
- W4318213610 workType "book-chapter" @default.