Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318217967> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4318217967 endingPage "105891" @default.
- W4318217967 startingPage "105891" @default.
- W4318217967 abstract "A wireless sensor network assisted by multiple autonomous unmanned aerial vehicles (UAVs) is a promising solution for harvesting data and monitoring the circumstance in various applications. However, the complicated path planning problem of each UAV is still problematic. In this paper, we propose an optimal operation strategy based on multi-agent reinforcement learning (MARL) to tackle these hurdles. Various parameters such as the number of deployed UAVs, charging start capacity, and charging complete capacity define a multi-UAV system. This approach is applicable without a time-consuming and costly policy control. We also describe how to balance multiple objectives, such as data harvesting, charging, and collision avoidance, using transfer learning. Finally, learning a policy control that generalizes multiple scenario parameters allows us to analyze the performance of individual parameters in a specific scenario, which helps find the macro-level optimal parameter within a particular scenario. Videos are available at https://github.com/mincheolseong/UAV-Trajectory-Optimizer." @default.
- W4318217967 created "2023-01-27" @default.
- W4318217967 creator A5013567936 @default.
- W4318217967 creator A5014251132 @default.
- W4318217967 creator A5042402971 @default.
- W4318217967 date "2023-04-01" @default.
- W4318217967 modified "2023-10-16" @default.
- W4318217967 title "Multi-UAV trajectory optimizer: A sustainable system for wireless data harvesting with deep reinforcement learning" @default.
- W4318217967 cites W2113540812 @default.
- W4318217967 cites W2145339207 @default.
- W4318217967 cites W2746553466 @default.
- W4318217967 cites W2888818566 @default.
- W4318217967 cites W2896225747 @default.
- W4318217967 cites W2925554975 @default.
- W4318217967 cites W2953517031 @default.
- W4318217967 cites W2962847915 @default.
- W4318217967 cites W2987256267 @default.
- W4318217967 cites W2994008524 @default.
- W4318217967 cites W2997234356 @default.
- W4318217967 cites W3001321893 @default.
- W4318217967 cites W3088703345 @default.
- W4318217967 cites W3093571944 @default.
- W4318217967 cites W3159935161 @default.
- W4318217967 cites W3176727369 @default.
- W4318217967 doi "https://doi.org/10.1016/j.engappai.2023.105891" @default.
- W4318217967 hasPublicationYear "2023" @default.
- W4318217967 type Work @default.
- W4318217967 citedByCount "2" @default.
- W4318217967 countsByYear W43182179672023 @default.
- W4318217967 crossrefType "journal-article" @default.
- W4318217967 hasAuthorship W4318217967A5013567936 @default.
- W4318217967 hasAuthorship W4318217967A5014251132 @default.
- W4318217967 hasAuthorship W4318217967A5042402971 @default.
- W4318217967 hasConcept C119857082 @default.
- W4318217967 hasConcept C120314980 @default.
- W4318217967 hasConcept C121332964 @default.
- W4318217967 hasConcept C121704057 @default.
- W4318217967 hasConcept C1276947 @default.
- W4318217967 hasConcept C13662910 @default.
- W4318217967 hasConcept C154945302 @default.
- W4318217967 hasConcept C173246807 @default.
- W4318217967 hasConcept C24590314 @default.
- W4318217967 hasConcept C2775924081 @default.
- W4318217967 hasConcept C2780864053 @default.
- W4318217967 hasConcept C31258907 @default.
- W4318217967 hasConcept C38652104 @default.
- W4318217967 hasConcept C41008148 @default.
- W4318217967 hasConcept C555944384 @default.
- W4318217967 hasConcept C76155785 @default.
- W4318217967 hasConcept C79403827 @default.
- W4318217967 hasConcept C81074085 @default.
- W4318217967 hasConcept C90509273 @default.
- W4318217967 hasConcept C97541855 @default.
- W4318217967 hasConceptScore W4318217967C119857082 @default.
- W4318217967 hasConceptScore W4318217967C120314980 @default.
- W4318217967 hasConceptScore W4318217967C121332964 @default.
- W4318217967 hasConceptScore W4318217967C121704057 @default.
- W4318217967 hasConceptScore W4318217967C1276947 @default.
- W4318217967 hasConceptScore W4318217967C13662910 @default.
- W4318217967 hasConceptScore W4318217967C154945302 @default.
- W4318217967 hasConceptScore W4318217967C173246807 @default.
- W4318217967 hasConceptScore W4318217967C24590314 @default.
- W4318217967 hasConceptScore W4318217967C2775924081 @default.
- W4318217967 hasConceptScore W4318217967C2780864053 @default.
- W4318217967 hasConceptScore W4318217967C31258907 @default.
- W4318217967 hasConceptScore W4318217967C38652104 @default.
- W4318217967 hasConceptScore W4318217967C41008148 @default.
- W4318217967 hasConceptScore W4318217967C555944384 @default.
- W4318217967 hasConceptScore W4318217967C76155785 @default.
- W4318217967 hasConceptScore W4318217967C79403827 @default.
- W4318217967 hasConceptScore W4318217967C81074085 @default.
- W4318217967 hasConceptScore W4318217967C90509273 @default.
- W4318217967 hasConceptScore W4318217967C97541855 @default.
- W4318217967 hasFunder F4320322120 @default.
- W4318217967 hasLocation W43182179671 @default.
- W4318217967 hasOpenAccess W4318217967 @default.
- W4318217967 hasPrimaryLocation W43182179671 @default.
- W4318217967 hasRelatedWork W2015393961 @default.
- W4318217967 hasRelatedWork W2034340939 @default.
- W4318217967 hasRelatedWork W2139910871 @default.
- W4318217967 hasRelatedWork W2356996864 @default.
- W4318217967 hasRelatedWork W2361427670 @default.
- W4318217967 hasRelatedWork W2378339670 @default.
- W4318217967 hasRelatedWork W2886240924 @default.
- W4318217967 hasRelatedWork W2904060783 @default.
- W4318217967 hasRelatedWork W4381746183 @default.
- W4318217967 hasRelatedWork W4385832323 @default.
- W4318217967 hasVolume "120" @default.
- W4318217967 isParatext "false" @default.
- W4318217967 isRetracted "false" @default.
- W4318217967 workType "article" @default.