Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318219815> ?p ?o ?g. }
- W4318219815 abstract "Abstract Diabetic retinopathy is a retinal compilation that causes visual impairment. Hemorrhage is one of the pathological symptoms of diabetic retinopathy that emerges during disease development. Therefore, hemorrhage detection reveals the presence of diabetic retinopathy in the early phase. Diagnosing the disease in its initial stage is crucial to adopt proper treatment so the repercussions can be prevented. The automatic deep learning-based hemorrhage detection method is proposed that can be used as the second interpreter for ophthalmologists to reduce the time and complexity of conventional screening methods. The quality of the images was enhanced, and the prospective hemorrhage locations were estimated in the preprocessing stage. Modified gamma correction adaptively illuminates fundus images by using gradient information to address the nonuniform brightness levels of images. The algorithm estimated the locations of potential candidates by using a Gaussian match filter, entropy thresholding, and mathematical morphology. The required objects were segmented using the regional diversity at estimated locations. The novel hemorrhage network is propounded for hemorrhage classification and compared with the renowned deep models. Two datasets benchmarked the model’s performance using sensitivity, specificity, precision, and accuracy metrics. Despite being the shallowest network, the proposed network marked competitive results than LeNet-5, AlexNet, ResNet50, and VGG-16. The hemorrhage network was assessed using training time and classification accuracy through synthetic experimentation. Results showed promising accuracy in the classification stage while significantly reducing training time. The research concluded that increasing deep network layers does not guarantee good results but rather increases training time. The suitable architecture of a deep model and its appropriate parameters are critical for obtaining excellent outcomes." @default.
- W4318219815 created "2023-01-27" @default.
- W4318219815 creator A5044513391 @default.
- W4318219815 creator A5051659201 @default.
- W4318219815 creator A5058990381 @default.
- W4318219815 date "2023-01-27" @default.
- W4318219815 modified "2023-09-30" @default.
- W4318219815 title "Deep learning-based hemorrhage detection for diabetic retinopathy screening" @default.
- W4318219815 cites W1091878006 @default.
- W4318219815 cites W2012955036 @default.
- W4318219815 cites W2031278796 @default.
- W4318219815 cites W2034037879 @default.
- W4318219815 cites W2166524747 @default.
- W4318219815 cites W2275204317 @default.
- W4318219815 cites W2344912502 @default.
- W4318219815 cites W2555755671 @default.
- W4318219815 cites W2621218712 @default.
- W4318219815 cites W2738328909 @default.
- W4318219815 cites W2894558420 @default.
- W4318219815 cites W2899966493 @default.
- W4318219815 cites W2901051598 @default.
- W4318219815 cites W2904160990 @default.
- W4318219815 cites W2904236403 @default.
- W4318219815 cites W2907743631 @default.
- W4318219815 cites W2912250162 @default.
- W4318219815 cites W2919816425 @default.
- W4318219815 cites W2946839276 @default.
- W4318219815 cites W2963298074 @default.
- W4318219815 cites W3012303644 @default.
- W4318219815 cites W3024471355 @default.
- W4318219815 cites W3043492978 @default.
- W4318219815 cites W3048817311 @default.
- W4318219815 cites W3116658037 @default.
- W4318219815 cites W3118677001 @default.
- W4318219815 cites W3122431193 @default.
- W4318219815 cites W3154792692 @default.
- W4318219815 cites W3157072550 @default.
- W4318219815 cites W3158522809 @default.
- W4318219815 cites W3178968800 @default.
- W4318219815 cites W3207496613 @default.
- W4318219815 doi "https://doi.org/10.1038/s41598-023-28680-3" @default.
- W4318219815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36707608" @default.
- W4318219815 hasPublicationYear "2023" @default.
- W4318219815 type Work @default.
- W4318219815 citedByCount "6" @default.
- W4318219815 countsByYear W43182198152023 @default.
- W4318219815 crossrefType "journal-article" @default.
- W4318219815 hasAuthorship W4318219815A5044513391 @default.
- W4318219815 hasAuthorship W4318219815A5051659201 @default.
- W4318219815 hasAuthorship W4318219815A5058990381 @default.
- W4318219815 hasBestOaLocation W43182198151 @default.
- W4318219815 hasConcept C108583219 @default.
- W4318219815 hasConcept C115961682 @default.
- W4318219815 hasConcept C118487528 @default.
- W4318219815 hasConcept C134018914 @default.
- W4318219815 hasConcept C153180895 @default.
- W4318219815 hasConcept C154945302 @default.
- W4318219815 hasConcept C191178318 @default.
- W4318219815 hasConcept C2776474195 @default.
- W4318219815 hasConcept C2778313320 @default.
- W4318219815 hasConcept C2779829184 @default.
- W4318219815 hasConcept C2780248432 @default.
- W4318219815 hasConcept C2780827179 @default.
- W4318219815 hasConcept C34736171 @default.
- W4318219815 hasConcept C41008148 @default.
- W4318219815 hasConcept C555293320 @default.
- W4318219815 hasConcept C71924100 @default.
- W4318219815 hasConceptScore W4318219815C108583219 @default.
- W4318219815 hasConceptScore W4318219815C115961682 @default.
- W4318219815 hasConceptScore W4318219815C118487528 @default.
- W4318219815 hasConceptScore W4318219815C134018914 @default.
- W4318219815 hasConceptScore W4318219815C153180895 @default.
- W4318219815 hasConceptScore W4318219815C154945302 @default.
- W4318219815 hasConceptScore W4318219815C191178318 @default.
- W4318219815 hasConceptScore W4318219815C2776474195 @default.
- W4318219815 hasConceptScore W4318219815C2778313320 @default.
- W4318219815 hasConceptScore W4318219815C2779829184 @default.
- W4318219815 hasConceptScore W4318219815C2780248432 @default.
- W4318219815 hasConceptScore W4318219815C2780827179 @default.
- W4318219815 hasConceptScore W4318219815C34736171 @default.
- W4318219815 hasConceptScore W4318219815C41008148 @default.
- W4318219815 hasConceptScore W4318219815C555293320 @default.
- W4318219815 hasConceptScore W4318219815C71924100 @default.
- W4318219815 hasIssue "1" @default.
- W4318219815 hasLocation W43182198151 @default.
- W4318219815 hasLocation W43182198152 @default.
- W4318219815 hasLocation W43182198153 @default.
- W4318219815 hasOpenAccess W4318219815 @default.
- W4318219815 hasPrimaryLocation W43182198151 @default.
- W4318219815 hasRelatedWork W2033000528 @default.
- W4318219815 hasRelatedWork W2066259560 @default.
- W4318219815 hasRelatedWork W2262783296 @default.
- W4318219815 hasRelatedWork W2380927352 @default.
- W4318219815 hasRelatedWork W2390140675 @default.
- W4318219815 hasRelatedWork W2391959412 @default.
- W4318219815 hasRelatedWork W2792520941 @default.
- W4318219815 hasRelatedWork W4313289316 @default.
- W4318219815 hasRelatedWork W4377967120 @default.
- W4318219815 hasRelatedWork W823110065 @default.
- W4318219815 hasVolume "13" @default.