Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318240084> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4318240084 endingPage "325" @default.
- W4318240084 startingPage "315" @default.
- W4318240084 abstract "Evaporation from dam reservoir surfaces is crucial in terms of water resource management and planning. In this study, the new hybrid models of wavelet-Gaussian process regression (WGPR) and wavelet-multiple linear regression (WMLR) combining wavelet transform with the Gaussian process regression (GPR) model and conventional multi-linear regression (MLR) were used to predict reservoir evaporation (RE) in Amirkabir Dam, Iran. Having decomposed the input variables by wavelet transform based on the feature selection using correlation (CFS), the important components were detected and inserted into the GPR and MLR models, thereby creating WGPR-CFS and WMLR-CFS models. The results were then compared with the GPR and MLR models, and the effect of applying each of these models using correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) was evaluated, as well. As the findings showed, the MLR model had better performance with R = 0.960, MAE = 25.45 (mm), and RMSE = 30.45 (mm) values for the variable of RE compared to the GPR model with R = 0.863, MAE = 45.30 (mm) and RMSE = 57.61 (mm) values. In addition, comparing MLR and hybrid models, the proposed hybrid models were considered as viable options to improve the prediction accuracy of RE. The results also showed that, among the 32 hybrid models, the WGPR-CFS model with R = 0.979, MAE = 18.61 (mm), and RMSE = 23.96 (mm) values was the best model for the prediction of RE values." @default.
- W4318240084 created "2023-01-27" @default.
- W4318240084 creator A5000250154 @default.
- W4318240084 creator A5003316130 @default.
- W4318240084 creator A5024079845 @default.
- W4318240084 creator A5061506349 @default.
- W4318240084 date "2023-01-01" @default.
- W4318240084 modified "2023-09-25" @default.
- W4318240084 title "Wavelet decomposition based on Gaussian process regression and multiple linear regression: Monthly reservoir evaporation prediction" @default.
- W4318240084 cites W1997052242 @default.
- W4318240084 cites W2035811055 @default.
- W4318240084 cites W2046863487 @default.
- W4318240084 cites W2051030695 @default.
- W4318240084 cites W2058621438 @default.
- W4318240084 cites W2082192822 @default.
- W4318240084 cites W2091873118 @default.
- W4318240084 cites W2101389948 @default.
- W4318240084 cites W2123953163 @default.
- W4318240084 cites W2136269841 @default.
- W4318240084 cites W2463489071 @default.
- W4318240084 cites W2748606210 @default.
- W4318240084 cites W2770823905 @default.
- W4318240084 cites W2793702125 @default.
- W4318240084 cites W2944008221 @default.
- W4318240084 cites W2951795444 @default.
- W4318240084 cites W3010209923 @default.
- W4318240084 cites W3029312492 @default.
- W4318240084 cites W3035519058 @default.
- W4318240084 cites W3082558962 @default.
- W4318240084 cites W836867855 @default.
- W4318240084 doi "https://doi.org/10.1016/b978-0-12-821961-4.00013-0" @default.
- W4318240084 hasPublicationYear "2023" @default.
- W4318240084 type Work @default.
- W4318240084 citedByCount "0" @default.
- W4318240084 crossrefType "book-chapter" @default.
- W4318240084 hasAuthorship W4318240084A5000250154 @default.
- W4318240084 hasAuthorship W4318240084A5003316130 @default.
- W4318240084 hasAuthorship W4318240084A5024079845 @default.
- W4318240084 hasAuthorship W4318240084A5061506349 @default.
- W4318240084 hasConcept C105795698 @default.
- W4318240084 hasConcept C139945424 @default.
- W4318240084 hasConcept C152877465 @default.
- W4318240084 hasConcept C154945302 @default.
- W4318240084 hasConcept C2780092901 @default.
- W4318240084 hasConcept C33923547 @default.
- W4318240084 hasConcept C41008148 @default.
- W4318240084 hasConcept C47432892 @default.
- W4318240084 hasConcept C48921125 @default.
- W4318240084 hasConcept C81692654 @default.
- W4318240084 hasConcept C83546350 @default.
- W4318240084 hasConceptScore W4318240084C105795698 @default.
- W4318240084 hasConceptScore W4318240084C139945424 @default.
- W4318240084 hasConceptScore W4318240084C152877465 @default.
- W4318240084 hasConceptScore W4318240084C154945302 @default.
- W4318240084 hasConceptScore W4318240084C2780092901 @default.
- W4318240084 hasConceptScore W4318240084C33923547 @default.
- W4318240084 hasConceptScore W4318240084C41008148 @default.
- W4318240084 hasConceptScore W4318240084C47432892 @default.
- W4318240084 hasConceptScore W4318240084C48921125 @default.
- W4318240084 hasConceptScore W4318240084C81692654 @default.
- W4318240084 hasConceptScore W4318240084C83546350 @default.
- W4318240084 hasLocation W43182400841 @default.
- W4318240084 hasOpenAccess W4318240084 @default.
- W4318240084 hasPrimaryLocation W43182400841 @default.
- W4318240084 hasRelatedWork W1576516070 @default.
- W4318240084 hasRelatedWork W1750911557 @default.
- W4318240084 hasRelatedWork W1987874405 @default.
- W4318240084 hasRelatedWork W1992859205 @default.
- W4318240084 hasRelatedWork W2106328306 @default.
- W4318240084 hasRelatedWork W2130232319 @default.
- W4318240084 hasRelatedWork W2966251753 @default.
- W4318240084 hasRelatedWork W2990830163 @default.
- W4318240084 hasRelatedWork W3000069690 @default.
- W4318240084 hasRelatedWork W3042029886 @default.
- W4318240084 isParatext "false" @default.
- W4318240084 isRetracted "false" @default.
- W4318240084 workType "book-chapter" @default.