Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318243913> ?p ?o ?g. }
- W4318243913 endingPage "6152" @default.
- W4318243913 startingPage "6142" @default.
- W4318243913 abstract "The olivine phosphate family has been widely utilized as cathode materials for high-performance lithium-ion batteries. However, limited energy density and poor rate performance caused by low electronic and ionic conductivities are the main obstacles that need to be overcome for their widespread application. In this work, atomic simulations have been performed to study the effects of lattice strains on the Li+ ion migration energy barrier in olivine phosphates LiMPO4 (M = Mn, Fe, Co) and (LiFePO4)n(LiMnPO4)m superlattices (SLs). The (LiFePO4)n(LiMnPO4)m superlattices include three ratios of LFP/LMP, namely SL3 + 1, SL1 + 1 and SL1 + 3, each of which is along three typical (100), (010) and (001) orientations. We mainly discuss two migration paths of Li+ ions: the low-energy path A channel parallel to the b-axis and the medium-energy path B channel parallel to the c-axis. It is found that the biaxial tensile strain perpendicular to the migration path is most beneficial to reduce the migration energy barrier of Li+ ions, and the strain on the b-axis has a dominant effect on the energy barrier of Li+ ion migration. For path A, SL3 + 1 alternating periodically along the (010) orientation can obtain the lowest Li ion migration energy barrier. For path B, SL1 + 3 is the most favorable for Li+ ion migration, and there is no significant difference among the three orientations. Our work provides reference values for cathode materials and battery design." @default.
- W4318243913 created "2023-01-27" @default.
- W4318243913 creator A5007658109 @default.
- W4318243913 creator A5009913817 @default.
- W4318243913 creator A5010677603 @default.
- W4318243913 creator A5049082654 @default.
- W4318243913 date "2023-01-01" @default.
- W4318243913 modified "2023-09-25" @default.
- W4318243913 title "Strain engineering of Li<sup>+</sup> ion migration in olivine phosphate cathode materials LiMPO<sub>4</sub> (M = Mn, Fe, Co) and (LiFePO<sub>4</sub>)<sub><i>n</i></sub>(LiMnPO<sub>4</sub>)<sub><i>m</i></sub> superlattices" @default.
- W4318243913 cites W1496481655 @default.
- W4318243913 cites W1517072742 @default.
- W4318243913 cites W1676913226 @default.
- W4318243913 cites W1778797920 @default.
- W4318243913 cites W1949231392 @default.
- W4318243913 cites W1967131957 @default.
- W4318243913 cites W1967712272 @default.
- W4318243913 cites W1974888231 @default.
- W4318243913 cites W1979082204 @default.
- W4318243913 cites W1989858020 @default.
- W4318243913 cites W1989884081 @default.
- W4318243913 cites W1990498325 @default.
- W4318243913 cites W1992732132 @default.
- W4318243913 cites W1993498940 @default.
- W4318243913 cites W1997885561 @default.
- W4318243913 cites W2003652647 @default.
- W4318243913 cites W2003954082 @default.
- W4318243913 cites W2006318126 @default.
- W4318243913 cites W2007663400 @default.
- W4318243913 cites W2009930960 @default.
- W4318243913 cites W2017235933 @default.
- W4318243913 cites W2018347463 @default.
- W4318243913 cites W2019903682 @default.
- W4318243913 cites W2020392211 @default.
- W4318243913 cites W2024404067 @default.
- W4318243913 cites W2025161809 @default.
- W4318243913 cites W2028056984 @default.
- W4318243913 cites W2028306056 @default.
- W4318243913 cites W2029089705 @default.
- W4318243913 cites W2029191064 @default.
- W4318243913 cites W2034758734 @default.
- W4318243913 cites W2036119403 @default.
- W4318243913 cites W2037542092 @default.
- W4318243913 cites W2038765294 @default.
- W4318243913 cites W2040534302 @default.
- W4318243913 cites W2048340615 @default.
- W4318243913 cites W2050472814 @default.
- W4318243913 cites W2057318252 @default.
- W4318243913 cites W2057502998 @default.
- W4318243913 cites W2060142904 @default.
- W4318243913 cites W2060937228 @default.
- W4318243913 cites W2065700577 @default.
- W4318243913 cites W2069456576 @default.
- W4318243913 cites W2071478843 @default.
- W4318243913 cites W2079907666 @default.
- W4318243913 cites W2086802226 @default.
- W4318243913 cites W2087935795 @default.
- W4318243913 cites W2088519148 @default.
- W4318243913 cites W2091593386 @default.
- W4318243913 cites W2092098411 @default.
- W4318243913 cites W2097535432 @default.
- W4318243913 cites W2102664129 @default.
- W4318243913 cites W2115864365 @default.
- W4318243913 cites W2132221912 @default.
- W4318243913 cites W2152510783 @default.
- W4318243913 cites W2164425964 @default.
- W4318243913 cites W2260433152 @default.
- W4318243913 cites W2288619249 @default.
- W4318243913 cites W2291569823 @default.
- W4318243913 cites W2314815261 @default.
- W4318243913 cites W2319495539 @default.
- W4318243913 cites W2328923857 @default.
- W4318243913 cites W2529901569 @default.
- W4318243913 cites W2538289250 @default.
- W4318243913 cites W2555396147 @default.
- W4318243913 cites W2598662203 @default.
- W4318243913 cites W2752511448 @default.
- W4318243913 cites W2767279171 @default.
- W4318243913 cites W2935715515 @default.
- W4318243913 cites W2940071673 @default.
- W4318243913 cites W2953229859 @default.
- W4318243913 cites W2965248642 @default.
- W4318243913 cites W2969579263 @default.
- W4318243913 cites W3010490317 @default.
- W4318243913 cites W3023435578 @default.
- W4318243913 cites W3028289693 @default.
- W4318243913 cites W3034882016 @default.
- W4318243913 cites W3103855335 @default.
- W4318243913 cites W3106537761 @default.
- W4318243913 cites W3121949781 @default.
- W4318243913 cites W3128983842 @default.
- W4318243913 cites W3165088489 @default.
- W4318243913 cites W3186137953 @default.
- W4318243913 cites W4224997445 @default.
- W4318243913 cites W4243542028 @default.
- W4318243913 cites W4313455193 @default.
- W4318243913 doi "https://doi.org/10.1039/d2cp05241e" @default.
- W4318243913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36752130" @default.
- W4318243913 hasPublicationYear "2023" @default.