Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318318404> ?p ?o ?g. }
- W4318318404 abstract "Abstract Context Coffee farms benefits from ecosystem services dependent on pollinators and pest predators. The flow of these biodiversity-based ecosystem services is regulated by landscape-scale processes. Therefore, the landscape structure in which coffee farms are inserted influence coffee production. Objectives The aim of this paper is to investigate how landscape structure can influence coffee production at different scales. We also evaluated the predictive utility of landscape metrics in a spatial (farm level) and aspatial approach (municipality level). Methods We tested the effect of six landscape metrics on coffee production for 25 farms and 30 municipalities in southern Brazil. For the farm level we calculate the metrics at 1 to 5 km radii from the farm's centroid for access its scale of effect. A model selection of Generalized Linear Model (GLM) was run for access the effect of landscape metrics on coffee production for both approaches (spatial and aspatial). Results We obtained that coffee production was negatively influenced by the landscape intensity index, while landscape diversity and the native forest patch density had a positive effect on production. All significant metrics had effects emerging within a 2 km radius at the farm level, but we had no effects at the municipality scale. Our findings suggest that the landscape composition in the immediate surroundings of coffee farms is useful to predict production in a spatially explicit approach. However, these metrics are not able to detect the effect of the landscape when analyzed in an aspatial approach. These findings highlight the importance of the landscape spatial structure, mainly the natural one, in the stability of coffee production. Conclusions This study enhanced the knowledge on the role of the landscape in coffee production dependence on landscape-level processes. This advance can help to improve the sustainability of land use and better planning of agriculture, ensuring food and economic safety. Besides, we offer a framework that can be applied to study any cropping system with available census data (spatialized or not)." @default.
- W4318318404 created "2023-01-28" @default.
- W4318318404 creator A5071226770 @default.
- W4318318404 creator A5080426646 @default.
- W4318318404 date "2023-01-27" @default.
- W4318318404 modified "2023-09-26" @default.
- W4318318404 title "Like an “espresso” but not like a “cappuccino”: landscape metrics are useful for predicting coffee production at the farm level, but not at the municipality level" @default.
- W4318318404 cites W1896270614 @default.
- W4318318404 cites W1943602958 @default.
- W4318318404 cites W1989758149 @default.
- W4318318404 cites W1992172256 @default.
- W4318318404 cites W2009037795 @default.
- W4318318404 cites W2050104232 @default.
- W4318318404 cites W2053993224 @default.
- W4318318404 cites W2105041638 @default.
- W4318318404 cites W2105691566 @default.
- W4318318404 cites W2117133425 @default.
- W4318318404 cites W2120733987 @default.
- W4318318404 cites W2125548632 @default.
- W4318318404 cites W2128264262 @default.
- W4318318404 cites W2138832709 @default.
- W4318318404 cites W2139148231 @default.
- W4318318404 cites W2142023815 @default.
- W4318318404 cites W2153804214 @default.
- W4318318404 cites W2163287826 @default.
- W4318318404 cites W2165424425 @default.
- W4318318404 cites W2167094923 @default.
- W4318318404 cites W2183759444 @default.
- W4318318404 cites W2284844371 @default.
- W4318318404 cites W2294598170 @default.
- W4318318404 cites W2529880261 @default.
- W4318318404 cites W2551855154 @default.
- W4318318404 cites W2593102421 @default.
- W4318318404 cites W2749038040 @default.
- W4318318404 cites W2788527386 @default.
- W4318318404 cites W2789846118 @default.
- W4318318404 cites W2894845450 @default.
- W4318318404 cites W2897209280 @default.
- W4318318404 cites W2910195697 @default.
- W4318318404 cites W2922422128 @default.
- W4318318404 cites W2950911286 @default.
- W4318318404 cites W3089838813 @default.
- W4318318404 cites W3177790808 @default.
- W4318318404 cites W3179544807 @default.
- W4318318404 cites W3195275010 @default.
- W4318318404 cites W3213599802 @default.
- W4318318404 cites W4200230153 @default.
- W4318318404 cites W4220744931 @default.
- W4318318404 cites W4223972448 @default.
- W4318318404 doi "https://doi.org/10.21203/rs.3.rs-2499734/v1" @default.
- W4318318404 hasPublicationYear "2023" @default.
- W4318318404 type Work @default.
- W4318318404 citedByCount "0" @default.
- W4318318404 crossrefType "posted-content" @default.
- W4318318404 hasAuthorship W4318318404A5071226770 @default.
- W4318318404 hasAuthorship W4318318404A5080426646 @default.
- W4318318404 hasBestOaLocation W43183184041 @default.
- W4318318404 hasConcept C107826830 @default.
- W4318318404 hasConcept C110872660 @default.
- W4318318404 hasConcept C130217890 @default.
- W4318318404 hasConcept C139719470 @default.
- W4318318404 hasConcept C162324750 @default.
- W4318318404 hasConcept C166957645 @default.
- W4318318404 hasConcept C18903297 @default.
- W4318318404 hasConcept C205649164 @default.
- W4318318404 hasConcept C2778348673 @default.
- W4318318404 hasConcept C2778755073 @default.
- W4318318404 hasConcept C2779343474 @default.
- W4318318404 hasConcept C39432304 @default.
- W4318318404 hasConcept C54286561 @default.
- W4318318404 hasConcept C58640448 @default.
- W4318318404 hasConcept C58941895 @default.
- W4318318404 hasConcept C86803240 @default.
- W4318318404 hasConcept C97137747 @default.
- W4318318404 hasConceptScore W4318318404C107826830 @default.
- W4318318404 hasConceptScore W4318318404C110872660 @default.
- W4318318404 hasConceptScore W4318318404C130217890 @default.
- W4318318404 hasConceptScore W4318318404C139719470 @default.
- W4318318404 hasConceptScore W4318318404C162324750 @default.
- W4318318404 hasConceptScore W4318318404C166957645 @default.
- W4318318404 hasConceptScore W4318318404C18903297 @default.
- W4318318404 hasConceptScore W4318318404C205649164 @default.
- W4318318404 hasConceptScore W4318318404C2778348673 @default.
- W4318318404 hasConceptScore W4318318404C2778755073 @default.
- W4318318404 hasConceptScore W4318318404C2779343474 @default.
- W4318318404 hasConceptScore W4318318404C39432304 @default.
- W4318318404 hasConceptScore W4318318404C54286561 @default.
- W4318318404 hasConceptScore W4318318404C58640448 @default.
- W4318318404 hasConceptScore W4318318404C58941895 @default.
- W4318318404 hasConceptScore W4318318404C86803240 @default.
- W4318318404 hasConceptScore W4318318404C97137747 @default.
- W4318318404 hasLocation W43183184041 @default.
- W4318318404 hasOpenAccess W4318318404 @default.
- W4318318404 hasPrimaryLocation W43183184041 @default.
- W4318318404 hasRelatedWork W1843763927 @default.
- W4318318404 hasRelatedWork W2027370059 @default.
- W4318318404 hasRelatedWork W2176593401 @default.
- W4318318404 hasRelatedWork W2586477245 @default.
- W4318318404 hasRelatedWork W2934614478 @default.
- W4318318404 hasRelatedWork W3012692916 @default.