Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318406363> ?p ?o ?g. }
- W4318406363 endingPage "1001" @default.
- W4318406363 startingPage "985" @default.
- W4318406363 abstract "Abstract This paper aims to improve the efficiency of parameter identification of the nonlinear state‐space model (SSM). The commonly used particle Markov chain Monte Carlo (PMCMC) method is time‐consuming. The surrogate model is a useful acceleration strategy, but it is expensive to establish a global high‐precision surrogate model. This paper proposes an efficient algorithm that gradually estimates the unknown parameters in two stages. In the first stage, a reduced region is established based on the latest method. We train a local Gaussian Process regression (GPR) of the likelihood function in the reduced region based on the optimum Latin hypercube design (OLHD). In the second stage, we identify the unknown parameters more accurately based on the MCMC method. When the proposal sample is in the reduced region, we use GPR to estimate the likelihood; otherwise, BPF is used to estimate the likelihood. The reduced region is usually the high probability density region, which is why the algorithm is efficient. It is proved that the acceptance rate of any two samples based on the proposed algorithm is theoretically convergent to that of the PMCMC algorithm. Two examples demonstrate that the proposed method performs well in accuracy and efficiency." @default.
- W4318406363 created "2023-01-29" @default.
- W4318406363 creator A5018457826 @default.
- W4318406363 creator A5020507222 @default.
- W4318406363 creator A5054728664 @default.
- W4318406363 creator A5070991016 @default.
- W4318406363 creator A5077738424 @default.
- W4318406363 date "2023-01-28" @default.
- W4318406363 modified "2023-10-14" @default.
- W4318406363 title "An efficient two‐stage algorithm for parameter identification of non‐linear state‐space models‐based on Gaussian process regression" @default.
- W4318406363 cites W1501586228 @default.
- W4318406363 cites W1540164447 @default.
- W4318406363 cites W1995780830 @default.
- W4318406363 cites W2003468115 @default.
- W4318406363 cites W2003553868 @default.
- W4318406363 cites W2040135606 @default.
- W4318406363 cites W2045973738 @default.
- W4318406363 cites W2052195764 @default.
- W4318406363 cites W2065134558 @default.
- W4318406363 cites W2071544114 @default.
- W4318406363 cites W2091860746 @default.
- W4318406363 cites W2092124742 @default.
- W4318406363 cites W2114350394 @default.
- W4318406363 cites W2119643170 @default.
- W4318406363 cites W2148980794 @default.
- W4318406363 cites W2170282164 @default.
- W4318406363 cites W2239079564 @default.
- W4318406363 cites W2244564378 @default.
- W4318406363 cites W2290890837 @default.
- W4318406363 cites W2594579511 @default.
- W4318406363 cites W2789562737 @default.
- W4318406363 cites W2963015295 @default.
- W4318406363 cites W2963779771 @default.
- W4318406363 cites W2969500414 @default.
- W4318406363 cites W3013324456 @default.
- W4318406363 cites W3048950194 @default.
- W4318406363 cites W3084707926 @default.
- W4318406363 cites W3098926670 @default.
- W4318406363 cites W3101747691 @default.
- W4318406363 cites W3102838421 @default.
- W4318406363 cites W3114516319 @default.
- W4318406363 cites W3117140904 @default.
- W4318406363 cites W3129691502 @default.
- W4318406363 cites W37723373 @default.
- W4318406363 cites W4206186769 @default.
- W4318406363 cites W4210785234 @default.
- W4318406363 cites W749200212 @default.
- W4318406363 doi "https://doi.org/10.1049/cth2.12431" @default.
- W4318406363 hasPublicationYear "2023" @default.
- W4318406363 type Work @default.
- W4318406363 citedByCount "1" @default.
- W4318406363 countsByYear W43184063632023 @default.
- W4318406363 crossrefType "journal-article" @default.
- W4318406363 hasAuthorship W4318406363A5018457826 @default.
- W4318406363 hasAuthorship W4318406363A5020507222 @default.
- W4318406363 hasAuthorship W4318406363A5054728664 @default.
- W4318406363 hasAuthorship W4318406363A5070991016 @default.
- W4318406363 hasAuthorship W4318406363A5077738424 @default.
- W4318406363 hasBestOaLocation W43184063631 @default.
- W4318406363 hasConcept C105795698 @default.
- W4318406363 hasConcept C111350023 @default.
- W4318406363 hasConcept C11413529 @default.
- W4318406363 hasConcept C121332964 @default.
- W4318406363 hasConcept C126255220 @default.
- W4318406363 hasConcept C163716315 @default.
- W4318406363 hasConcept C167928553 @default.
- W4318406363 hasConcept C19499675 @default.
- W4318406363 hasConcept C33923547 @default.
- W4318406363 hasConcept C41008148 @default.
- W4318406363 hasConcept C61326573 @default.
- W4318406363 hasConcept C62520636 @default.
- W4318406363 hasConcept C72434380 @default.
- W4318406363 hasConcept C81692654 @default.
- W4318406363 hasConcept C89106044 @default.
- W4318406363 hasConceptScore W4318406363C105795698 @default.
- W4318406363 hasConceptScore W4318406363C111350023 @default.
- W4318406363 hasConceptScore W4318406363C11413529 @default.
- W4318406363 hasConceptScore W4318406363C121332964 @default.
- W4318406363 hasConceptScore W4318406363C126255220 @default.
- W4318406363 hasConceptScore W4318406363C163716315 @default.
- W4318406363 hasConceptScore W4318406363C167928553 @default.
- W4318406363 hasConceptScore W4318406363C19499675 @default.
- W4318406363 hasConceptScore W4318406363C33923547 @default.
- W4318406363 hasConceptScore W4318406363C41008148 @default.
- W4318406363 hasConceptScore W4318406363C61326573 @default.
- W4318406363 hasConceptScore W4318406363C62520636 @default.
- W4318406363 hasConceptScore W4318406363C72434380 @default.
- W4318406363 hasConceptScore W4318406363C81692654 @default.
- W4318406363 hasConceptScore W4318406363C89106044 @default.
- W4318406363 hasFunder F4320321001 @default.
- W4318406363 hasIssue "8" @default.
- W4318406363 hasLocation W43184063631 @default.
- W4318406363 hasOpenAccess W4318406363 @default.
- W4318406363 hasPrimaryLocation W43184063631 @default.
- W4318406363 hasRelatedWork W2063381173 @default.
- W4318406363 hasRelatedWork W2088093866 @default.
- W4318406363 hasRelatedWork W2089458270 @default.
- W4318406363 hasRelatedWork W2318821300 @default.