Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318464910> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4318464910 endingPage "1494" @default.
- W4318464910 startingPage "1494" @default.
- W4318464910 abstract "Corn diseases are one of the significant constraints to high-quality corn production, and accurate identification of corn diseases is of great importance for precise disease control. Corn anthracnose and brown spot are typical diseases of corn, and the early symptoms of the two diseases are similar, which can be easily misidentified by the naked eye. In this paper, to address the above problems, a three-dimensional-two-dimensional (3D-2D) hybrid convolutional neural network (CNN) model combining a band selection module is proposed based on hyperspectral image data, which combines band selection, attention mechanism, spatial-spectral feature extraction, and classification into a unified optimization process. The model first inputs hyperspectral images to both the band selection module and the attention mechanism module and then sums the outputs of the two modules as inputs to a 3D-2D hybrid CNN, resulting in a Y-shaped architecture named Y-Net. The results show that the spectral bands selected by the band selection module of Y-Net achieve more reliable classification performance than traditional feature selection methods. Y-Net obtained the best classification accuracy compared to support vector machines, one-dimensional (1D) CNNs, and two-dimensional (2D) CNNs. After the network pruned the trained Y-Net, the model size was reduced to one-third of the original size, and the accuracy rate reached 98.34%. The study results can provide new ideas and references for disease identification of corn and other crops." @default.
- W4318464910 created "2023-01-30" @default.
- W4318464910 creator A5022911616 @default.
- W4318464910 creator A5060626621 @default.
- W4318464910 creator A5083610281 @default.
- W4318464910 creator A5088401907 @default.
- W4318464910 date "2023-01-29" @default.
- W4318464910 modified "2023-10-01" @default.
- W4318464910 title "Y–Net: Identification of Typical Diseases of Corn Leaves Using a 3D–2D Hybrid CNN Model Combined with a Hyperspectral Image Band Selection Module" @default.
- W4318464910 cites W1650928139 @default.
- W4318464910 cites W1988706645 @default.
- W4318464910 cites W1999437504 @default.
- W4318464910 cites W2003183258 @default.
- W4318464910 cites W2080226666 @default.
- W4318464910 cites W2087263574 @default.
- W4318464910 cites W2356617668 @default.
- W4318464910 cites W2769143033 @default.
- W4318464910 cites W2782315805 @default.
- W4318464910 cites W2914331134 @default.
- W4318464910 cites W2963363786 @default.
- W4318464910 cites W2968460295 @default.
- W4318464910 cites W2969933026 @default.
- W4318464910 cites W2978267745 @default.
- W4318464910 cites W2983746853 @default.
- W4318464910 cites W3010420609 @default.
- W4318464910 cites W3039321110 @default.
- W4318464910 cites W3081084433 @default.
- W4318464910 cites W3094130103 @default.
- W4318464910 cites W3099698445 @default.
- W4318464910 cites W3133307794 @default.
- W4318464910 cites W3172608860 @default.
- W4318464910 cites W3174848951 @default.
- W4318464910 cites W3176683426 @default.
- W4318464910 cites W3185462753 @default.
- W4318464910 cites W3201138713 @default.
- W4318464910 cites W3201906676 @default.
- W4318464910 cites W4221111785 @default.
- W4318464910 cites W4224991963 @default.
- W4318464910 cites W4225145858 @default.
- W4318464910 cites W4295956768 @default.
- W4318464910 doi "https://doi.org/10.3390/s23031494" @default.
- W4318464910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36772533" @default.
- W4318464910 hasPublicationYear "2023" @default.
- W4318464910 type Work @default.
- W4318464910 citedByCount "3" @default.
- W4318464910 countsByYear W43184649102023 @default.
- W4318464910 crossrefType "journal-article" @default.
- W4318464910 hasAuthorship W4318464910A5022911616 @default.
- W4318464910 hasAuthorship W4318464910A5060626621 @default.
- W4318464910 hasAuthorship W4318464910A5083610281 @default.
- W4318464910 hasAuthorship W4318464910A5088401907 @default.
- W4318464910 hasBestOaLocation W43184649101 @default.
- W4318464910 hasConcept C116834253 @default.
- W4318464910 hasConcept C12267149 @default.
- W4318464910 hasConcept C148483581 @default.
- W4318464910 hasConcept C153180895 @default.
- W4318464910 hasConcept C154945302 @default.
- W4318464910 hasConcept C159078339 @default.
- W4318464910 hasConcept C41008148 @default.
- W4318464910 hasConcept C52622490 @default.
- W4318464910 hasConcept C59822182 @default.
- W4318464910 hasConcept C81363708 @default.
- W4318464910 hasConcept C81917197 @default.
- W4318464910 hasConcept C86803240 @default.
- W4318464910 hasConceptScore W4318464910C116834253 @default.
- W4318464910 hasConceptScore W4318464910C12267149 @default.
- W4318464910 hasConceptScore W4318464910C148483581 @default.
- W4318464910 hasConceptScore W4318464910C153180895 @default.
- W4318464910 hasConceptScore W4318464910C154945302 @default.
- W4318464910 hasConceptScore W4318464910C159078339 @default.
- W4318464910 hasConceptScore W4318464910C41008148 @default.
- W4318464910 hasConceptScore W4318464910C52622490 @default.
- W4318464910 hasConceptScore W4318464910C59822182 @default.
- W4318464910 hasConceptScore W4318464910C81363708 @default.
- W4318464910 hasConceptScore W4318464910C81917197 @default.
- W4318464910 hasConceptScore W4318464910C86803240 @default.
- W4318464910 hasIssue "3" @default.
- W4318464910 hasLocation W43184649101 @default.
- W4318464910 hasLocation W43184649102 @default.
- W4318464910 hasLocation W43184649103 @default.
- W4318464910 hasOpenAccess W4318464910 @default.
- W4318464910 hasPrimaryLocation W43184649101 @default.
- W4318464910 hasRelatedWork W1490523270 @default.
- W4318464910 hasRelatedWork W2028628118 @default.
- W4318464910 hasRelatedWork W2051197289 @default.
- W4318464910 hasRelatedWork W2336974148 @default.
- W4318464910 hasRelatedWork W2781623059 @default.
- W4318464910 hasRelatedWork W2996933976 @default.
- W4318464910 hasRelatedWork W3013515612 @default.
- W4318464910 hasRelatedWork W3173596272 @default.
- W4318464910 hasRelatedWork W3208266890 @default.
- W4318464910 hasRelatedWork W2345184372 @default.
- W4318464910 hasVolume "23" @default.
- W4318464910 isParatext "false" @default.
- W4318464910 isRetracted "false" @default.
- W4318464910 workType "article" @default.