Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318482379> ?p ?o ?g. }
- W4318482379 endingPage "497" @default.
- W4318482379 startingPage "497" @default.
- W4318482379 abstract "The morphometry of the hip and pelvis can be evaluated in native radiographs. Artificial-intelligence-assisted analyses provide objective, accurate, and reproducible results. This study investigates the performance of an artificial intelligence (AI)-based software using deep learning algorithms to measure radiological parameters that identify femoroacetabular impingement and hip dysplasia. Sixty-two radiographs (124 hips) were manually evaluated by three observers and fully automated analyses were performed by an AI-driven software (HIPPO™, ImageBiopsy Lab, Vienna, Austria). We compared the performance of the three human readers with the HIPPO™ using a Bayesian mixed model. For this purpose, we used the absolute deviation from the median ratings of all readers and HIPPO™. Our results indicate a high probability that the AI-driven software ranks better than at least one manual reader for the majority of outcome measures. Hence, fully automated analyses could provide reproducible results and facilitate identifying radiographic signs of hip disorders." @default.
- W4318482379 created "2023-01-30" @default.
- W4318482379 creator A5005484603 @default.
- W4318482379 creator A5005657687 @default.
- W4318482379 creator A5043357160 @default.
- W4318482379 creator A5059383690 @default.
- W4318482379 creator A5060500227 @default.
- W4318482379 creator A5073078577 @default.
- W4318482379 creator A5077329488 @default.
- W4318482379 creator A5081766670 @default.
- W4318482379 creator A5083260396 @default.
- W4318482379 creator A5084778211 @default.
- W4318482379 date "2023-01-29" @default.
- W4318482379 modified "2023-10-01" @default.
- W4318482379 title "Deep Learning for Fully Automated Radiographic Measurements of the Pelvis and Hip" @default.
- W4318482379 cites W1860087536 @default.
- W4318482379 cites W1970790815 @default.
- W4318482379 cites W2088926234 @default.
- W4318482379 cites W2091464743 @default.
- W4318482379 cites W2101791609 @default.
- W4318482379 cites W2133834211 @default.
- W4318482379 cites W2231913376 @default.
- W4318482379 cites W2263202298 @default.
- W4318482379 cites W2788671891 @default.
- W4318482379 cites W2791557764 @default.
- W4318482379 cites W2928537485 @default.
- W4318482379 cites W2936307321 @default.
- W4318482379 cites W2936573766 @default.
- W4318482379 cites W3013681994 @default.
- W4318482379 cites W3081104184 @default.
- W4318482379 cites W3088146014 @default.
- W4318482379 cites W3131152693 @default.
- W4318482379 cites W4210858744 @default.
- W4318482379 cites W4213067114 @default.
- W4318482379 cites W4214849395 @default.
- W4318482379 cites W4220896716 @default.
- W4318482379 cites W4246333515 @default.
- W4318482379 cites W4281285582 @default.
- W4318482379 cites W4286717671 @default.
- W4318482379 cites W4296251976 @default.
- W4318482379 cites W4307550123 @default.
- W4318482379 cites W4308956344 @default.
- W4318482379 doi "https://doi.org/10.3390/diagnostics13030497" @default.
- W4318482379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36766600" @default.
- W4318482379 hasPublicationYear "2023" @default.
- W4318482379 type Work @default.
- W4318482379 citedByCount "1" @default.
- W4318482379 countsByYear W43184823792023 @default.
- W4318482379 crossrefType "journal-article" @default.
- W4318482379 hasAuthorship W4318482379A5005484603 @default.
- W4318482379 hasAuthorship W4318482379A5005657687 @default.
- W4318482379 hasAuthorship W4318482379A5043357160 @default.
- W4318482379 hasAuthorship W4318482379A5059383690 @default.
- W4318482379 hasAuthorship W4318482379A5060500227 @default.
- W4318482379 hasAuthorship W4318482379A5073078577 @default.
- W4318482379 hasAuthorship W4318482379A5077329488 @default.
- W4318482379 hasAuthorship W4318482379A5081766670 @default.
- W4318482379 hasAuthorship W4318482379A5083260396 @default.
- W4318482379 hasAuthorship W4318482379A5084778211 @default.
- W4318482379 hasBestOaLocation W43184823791 @default.
- W4318482379 hasConcept C108583219 @default.
- W4318482379 hasConcept C126838900 @default.
- W4318482379 hasConcept C154945302 @default.
- W4318482379 hasConcept C190892606 @default.
- W4318482379 hasConcept C19527891 @default.
- W4318482379 hasConcept C199360897 @default.
- W4318482379 hasConcept C2777904410 @default.
- W4318482379 hasConcept C2778357063 @default.
- W4318482379 hasConcept C2779961238 @default.
- W4318482379 hasConcept C36454342 @default.
- W4318482379 hasConcept C41008148 @default.
- W4318482379 hasConcept C71924100 @default.
- W4318482379 hasConceptScore W4318482379C108583219 @default.
- W4318482379 hasConceptScore W4318482379C126838900 @default.
- W4318482379 hasConceptScore W4318482379C154945302 @default.
- W4318482379 hasConceptScore W4318482379C190892606 @default.
- W4318482379 hasConceptScore W4318482379C19527891 @default.
- W4318482379 hasConceptScore W4318482379C199360897 @default.
- W4318482379 hasConceptScore W4318482379C2777904410 @default.
- W4318482379 hasConceptScore W4318482379C2778357063 @default.
- W4318482379 hasConceptScore W4318482379C2779961238 @default.
- W4318482379 hasConceptScore W4318482379C36454342 @default.
- W4318482379 hasConceptScore W4318482379C41008148 @default.
- W4318482379 hasConceptScore W4318482379C71924100 @default.
- W4318482379 hasIssue "3" @default.
- W4318482379 hasLocation W43184823791 @default.
- W4318482379 hasLocation W43184823792 @default.
- W4318482379 hasLocation W43184823793 @default.
- W4318482379 hasOpenAccess W4318482379 @default.
- W4318482379 hasPrimaryLocation W43184823791 @default.
- W4318482379 hasRelatedWork W2002525494 @default.
- W4318482379 hasRelatedWork W2088253974 @default.
- W4318482379 hasRelatedWork W2093137004 @default.
- W4318482379 hasRelatedWork W2122888780 @default.
- W4318482379 hasRelatedWork W2329577409 @default.
- W4318482379 hasRelatedWork W2883817540 @default.
- W4318482379 hasRelatedWork W2899084033 @default.
- W4318482379 hasRelatedWork W34372076 @default.