Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318570466> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4318570466 endingPage "2540" @default.
- W4318570466 startingPage "2533" @default.
- W4318570466 abstract "Determining the emotion of a speaker using their speech utterance by a machine is referred to as Speech Emotion Recognition System. It can greatly enhance the human and machine interaction experience. However, the system faces poor performance due to factors like variations in emotion intensity, speaker, language, and culture. In this study, we have used RAVDESS dataset consisting of speech utterances with two emotional intensities, namely, strong, and normal, raising the recognition difficulty level for the development of an efficient framework for the Speech Emotion Recognition System (SER). For SER, Gender Dependent Training for building the emotion detection models in the Speech Emotion Recognition System is proposed in this research work. The proposed system is less complex and is able to demonstrate good performance using only MFCC features and its variants, namely, delta MFCC and delta-delta MFCC features when compared with the baseline system, which has utilized five different features, namely, MFCC, Mel, Chromogram, Spectral Contrast and Tonnetz. When the average of the speech emotion accuracy of 6 emotions, such as, Sad, Fearful, Calm, Surprised, Disgust and Happy are considered, the proposed system has shown a relatively improved result by 6.90 % over the considered baseline system." @default.
- W4318570466 created "2023-01-31" @default.
- W4318570466 creator A5006257415 @default.
- W4318570466 creator A5067782453 @default.
- W4318570466 date "2023-01-01" @default.
- W4318570466 modified "2023-10-09" @default.
- W4318570466 title "Speech emotion recognition system using gender dependent convolution neural network" @default.
- W4318570466 cites W175750906 @default.
- W4318570466 cites W2074788634 @default.
- W4318570466 cites W2111926505 @default.
- W4318570466 cites W2803193013 @default.
- W4318570466 cites W3008039831 @default.
- W4318570466 cites W3100411971 @default.
- W4318570466 cites W3145643603 @default.
- W4318570466 doi "https://doi.org/10.1016/j.procs.2023.01.227" @default.
- W4318570466 hasPublicationYear "2023" @default.
- W4318570466 type Work @default.
- W4318570466 citedByCount "3" @default.
- W4318570466 countsByYear W43185704662023 @default.
- W4318570466 crossrefType "journal-article" @default.
- W4318570466 hasAuthorship W4318570466A5006257415 @default.
- W4318570466 hasAuthorship W4318570466A5067782453 @default.
- W4318570466 hasBestOaLocation W43185704661 @default.
- W4318570466 hasConcept C118552586 @default.
- W4318570466 hasConcept C151989614 @default.
- W4318570466 hasConcept C153180895 @default.
- W4318570466 hasConcept C154945302 @default.
- W4318570466 hasConcept C15744967 @default.
- W4318570466 hasConcept C2775852435 @default.
- W4318570466 hasConcept C2777375102 @default.
- W4318570466 hasConcept C2777438025 @default.
- W4318570466 hasConcept C2779302386 @default.
- W4318570466 hasConcept C28490314 @default.
- W4318570466 hasConcept C41008148 @default.
- W4318570466 hasConcept C45347329 @default.
- W4318570466 hasConcept C50644808 @default.
- W4318570466 hasConcept C52622490 @default.
- W4318570466 hasConceptScore W4318570466C118552586 @default.
- W4318570466 hasConceptScore W4318570466C151989614 @default.
- W4318570466 hasConceptScore W4318570466C153180895 @default.
- W4318570466 hasConceptScore W4318570466C154945302 @default.
- W4318570466 hasConceptScore W4318570466C15744967 @default.
- W4318570466 hasConceptScore W4318570466C2775852435 @default.
- W4318570466 hasConceptScore W4318570466C2777375102 @default.
- W4318570466 hasConceptScore W4318570466C2777438025 @default.
- W4318570466 hasConceptScore W4318570466C2779302386 @default.
- W4318570466 hasConceptScore W4318570466C28490314 @default.
- W4318570466 hasConceptScore W4318570466C41008148 @default.
- W4318570466 hasConceptScore W4318570466C45347329 @default.
- W4318570466 hasConceptScore W4318570466C50644808 @default.
- W4318570466 hasConceptScore W4318570466C52622490 @default.
- W4318570466 hasLocation W43185704661 @default.
- W4318570466 hasOpenAccess W4318570466 @default.
- W4318570466 hasPrimaryLocation W43185704661 @default.
- W4318570466 hasRelatedWork W169542367 @default.
- W4318570466 hasRelatedWork W192324892 @default.
- W4318570466 hasRelatedWork W1994885532 @default.
- W4318570466 hasRelatedWork W2170933828 @default.
- W4318570466 hasRelatedWork W2497697110 @default.
- W4318570466 hasRelatedWork W2787150620 @default.
- W4318570466 hasRelatedWork W3006133490 @default.
- W4318570466 hasRelatedWork W3177335058 @default.
- W4318570466 hasRelatedWork W4309965782 @default.
- W4318570466 hasRelatedWork W4318570466 @default.
- W4318570466 hasVolume "218" @default.
- W4318570466 isParatext "false" @default.
- W4318570466 isRetracted "false" @default.
- W4318570466 workType "article" @default.