Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318612159> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4318612159 endingPage "104635" @default.
- W4318612159 startingPage "104635" @default.
- W4318612159 abstract "A metabolic disease known as diabetes mellitus (DM) is primarily brought on by an increase in blood sugar levels. On the other hand, DM and the complications it causes, such as diabetic Retinopathy (DR), will quickly emerge as one of the major health challenges of the twenty-first century. This indicates a huge economic burden on health-related authorities and governments. The detection of DM in the earlier stage can lead to early diagnosis and a considerable drop in mortality. Therefore, in order to detect DM at an early stage, an efficient detection system having the ability to detect DM is required. An effective classification method, named Exponential Anti Corona Virus Optimization (ExpACVO) is devised in this research work for Diabetes Mellitus (DM) detection using tongue images. Here, the UNet-Conditional Random Field-Recurrent Neural Network (UNet-CRF-RNN) is used to segment the images, and the proposed ExpACVO algorithm is used to train the UNet-CRF-RNN. Deep Q Network (DQN) classifier is used for DM detection, and the proposed ExpACVO is used for DQN training. The proposed ExpACVO algorithm is a newly created formula that combines Anti Corona Virus Optimization(ACVO) with Exponential Weighted Moving Average (EWMA). With maximum testing accuracy, sensitivity, and specificity values of 0.932, 0.950, and 0.914, respectively, the developed technique thus achieved improved performance." @default.
- W4318612159 created "2023-01-31" @default.
- W4318612159 creator A5068524152 @default.
- W4318612159 creator A5077959088 @default.
- W4318612159 date "2023-05-01" @default.
- W4318612159 modified "2023-10-11" @default.
- W4318612159 title "ExpACVO-Hybrid Deep learning: Exponential Anti Corona Virus Optimization enabled Hybrid Deep learning for tongue image segmentation towards diabetes mellitus detection" @default.
- W4318612159 cites W1968910505 @default.
- W4318612159 cites W1982761740 @default.
- W4318612159 cites W2004064883 @default.
- W4318612159 cites W2037991817 @default.
- W4318612159 cites W2041372486 @default.
- W4318612159 cites W2062996161 @default.
- W4318612159 cites W2092300159 @default.
- W4318612159 cites W2101384127 @default.
- W4318612159 cites W2107871626 @default.
- W4318612159 cites W2112238126 @default.
- W4318612159 cites W2119399382 @default.
- W4318612159 cites W2149099097 @default.
- W4318612159 cites W2573137292 @default.
- W4318612159 cites W2593146171 @default.
- W4318612159 cites W2769494446 @default.
- W4318612159 cites W2803818176 @default.
- W4318612159 cites W2889636411 @default.
- W4318612159 cites W2966627975 @default.
- W4318612159 cites W2966823445 @default.
- W4318612159 cites W3010749409 @default.
- W4318612159 cites W3016911306 @default.
- W4318612159 cites W3038371396 @default.
- W4318612159 cites W3040853066 @default.
- W4318612159 cites W3084984468 @default.
- W4318612159 cites W3109356140 @default.
- W4318612159 cites W3114543730 @default.
- W4318612159 cites W3130360382 @default.
- W4318612159 cites W3165383688 @default.
- W4318612159 cites W3186985769 @default.
- W4318612159 doi "https://doi.org/10.1016/j.bspc.2023.104635" @default.
- W4318612159 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36741196" @default.
- W4318612159 hasPublicationYear "2023" @default.
- W4318612159 type Work @default.
- W4318612159 citedByCount "1" @default.
- W4318612159 countsByYear W43186121592023 @default.
- W4318612159 crossrefType "journal-article" @default.
- W4318612159 hasAuthorship W4318612159A5068524152 @default.
- W4318612159 hasAuthorship W4318612159A5077959088 @default.
- W4318612159 hasBestOaLocation W43186121591 @default.
- W4318612159 hasConcept C108583219 @default.
- W4318612159 hasConcept C134018914 @default.
- W4318612159 hasConcept C153180895 @default.
- W4318612159 hasConcept C154945302 @default.
- W4318612159 hasConcept C169258074 @default.
- W4318612159 hasConcept C41008148 @default.
- W4318612159 hasConcept C50644808 @default.
- W4318612159 hasConcept C555293320 @default.
- W4318612159 hasConcept C71924100 @default.
- W4318612159 hasConceptScore W4318612159C108583219 @default.
- W4318612159 hasConceptScore W4318612159C134018914 @default.
- W4318612159 hasConceptScore W4318612159C153180895 @default.
- W4318612159 hasConceptScore W4318612159C154945302 @default.
- W4318612159 hasConceptScore W4318612159C169258074 @default.
- W4318612159 hasConceptScore W4318612159C41008148 @default.
- W4318612159 hasConceptScore W4318612159C50644808 @default.
- W4318612159 hasConceptScore W4318612159C555293320 @default.
- W4318612159 hasConceptScore W4318612159C71924100 @default.
- W4318612159 hasLocation W43186121591 @default.
- W4318612159 hasLocation W43186121592 @default.
- W4318612159 hasLocation W43186121593 @default.
- W4318612159 hasOpenAccess W4318612159 @default.
- W4318612159 hasPrimaryLocation W43186121591 @default.
- W4318612159 hasRelatedWork W1546989560 @default.
- W4318612159 hasRelatedWork W1924178503 @default.
- W4318612159 hasRelatedWork W3033346322 @default.
- W4318612159 hasRelatedWork W3125561743 @default.
- W4318612159 hasRelatedWork W3135126032 @default.
- W4318612159 hasRelatedWork W3171520305 @default.
- W4318612159 hasRelatedWork W3193043704 @default.
- W4318612159 hasRelatedWork W4280648719 @default.
- W4318612159 hasRelatedWork W4308716060 @default.
- W4318612159 hasRelatedWork W4386259002 @default.
- W4318612159 hasVolume "83" @default.
- W4318612159 isParatext "false" @default.
- W4318612159 isRetracted "false" @default.
- W4318612159 workType "article" @default.