Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318677430> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4318677430 endingPage "100178" @default.
- W4318677430 startingPage "100178" @default.
- W4318677430 abstract "The generation of huge data with high velocity creates alteration in the distribution of the stream data, which is defined as the concept of drifts. The concept drifts negatively influence the classification accuracy and the stability of the data streams. Numerous machine learning-based models are developed to detect the concept drift in machine learning techniques. Yet, these models are inadequate for real-time applications due to time and memory constraints. Hence, this research devises dynamic streaming data analytics depending on the optimized hybrid deep learning classifier and Optimized Key Windowing (OKW) approach to effectively handle the time and memory constraints. An optimized hybrid deep learning classifier is the base classifier model developed by integrating deep Long short-term memory (LSTM) and deep Recurrent Neural Networks (RNN) to detect the concept drifts in streaming data. The model’s main advantage lies in enhanced accuracy in drift detection by a hybrid classifier due to optimal hyper parameter tuning, which is performed by the proposed intelligent preying algorithm. The other advantage of the proposed model lies in adapting the classifier with varying data patterns, which is performed using OKW. The experimentation is done using the benchmark dataset, such as Apache, Hadoop, Linux, Spark, and Cloud monitoring. The experimental analysis demonstrates the proposed model attaining higher sensitivity, accuracy, specificity, precision, and recall for Hadoop data. This shows a higher result than that of the competent techniques." @default.
- W4318677430 created "2023-02-01" @default.
- W4318677430 creator A5000966033 @default.
- W4318677430 creator A5018977319 @default.
- W4318677430 creator A5075504383 @default.
- W4318677430 creator A5080307602 @default.
- W4318677430 date "2023-03-01" @default.
- W4318677430 modified "2023-09-30" @default.
- W4318677430 title "A hybrid deep learning classifier and Optimized Key Windowing approach for drift detection and adaption" @default.
- W4318677430 cites W1567139212 @default.
- W4318677430 cites W2069701377 @default.
- W4318677430 cites W2087866628 @default.
- W4318677430 cites W2099419573 @default.
- W4318677430 cites W2146934273 @default.
- W4318677430 cites W2186910770 @default.
- W4318677430 cites W2508807458 @default.
- W4318677430 cites W2604756720 @default.
- W4318677430 cites W2801670977 @default.
- W4318677430 cites W2886346162 @default.
- W4318677430 cites W2893389168 @default.
- W4318677430 cites W2964273393 @default.
- W4318677430 cites W2992362249 @default.
- W4318677430 cites W3017897307 @default.
- W4318677430 cites W3043952189 @default.
- W4318677430 cites W3092560248 @default.
- W4318677430 cites W3111732345 @default.
- W4318677430 cites W3158109590 @default.
- W4318677430 cites W3159711257 @default.
- W4318677430 cites W3161172664 @default.
- W4318677430 cites W3163857886 @default.
- W4318677430 cites W3164036272 @default.
- W4318677430 cites W3167537398 @default.
- W4318677430 cites W4206925962 @default.
- W4318677430 cites W4225526006 @default.
- W4318677430 cites W4281719757 @default.
- W4318677430 cites W4291221983 @default.
- W4318677430 doi "https://doi.org/10.1016/j.dajour.2023.100178" @default.
- W4318677430 hasPublicationYear "2023" @default.
- W4318677430 type Work @default.
- W4318677430 citedByCount "3" @default.
- W4318677430 countsByYear W43186774302023 @default.
- W4318677430 crossrefType "journal-article" @default.
- W4318677430 hasAuthorship W4318677430A5000966033 @default.
- W4318677430 hasAuthorship W4318677430A5018977319 @default.
- W4318677430 hasAuthorship W4318677430A5075504383 @default.
- W4318677430 hasAuthorship W4318677430A5080307602 @default.
- W4318677430 hasBestOaLocation W43186774301 @default.
- W4318677430 hasConcept C108583219 @default.
- W4318677430 hasConcept C119857082 @default.
- W4318677430 hasConcept C124101348 @default.
- W4318677430 hasConcept C154945302 @default.
- W4318677430 hasConcept C2778484313 @default.
- W4318677430 hasConcept C41008148 @default.
- W4318677430 hasConcept C50644808 @default.
- W4318677430 hasConcept C60777511 @default.
- W4318677430 hasConcept C76155785 @default.
- W4318677430 hasConcept C89198739 @default.
- W4318677430 hasConcept C95623464 @default.
- W4318677430 hasConceptScore W4318677430C108583219 @default.
- W4318677430 hasConceptScore W4318677430C119857082 @default.
- W4318677430 hasConceptScore W4318677430C124101348 @default.
- W4318677430 hasConceptScore W4318677430C154945302 @default.
- W4318677430 hasConceptScore W4318677430C2778484313 @default.
- W4318677430 hasConceptScore W4318677430C41008148 @default.
- W4318677430 hasConceptScore W4318677430C50644808 @default.
- W4318677430 hasConceptScore W4318677430C60777511 @default.
- W4318677430 hasConceptScore W4318677430C76155785 @default.
- W4318677430 hasConceptScore W4318677430C89198739 @default.
- W4318677430 hasConceptScore W4318677430C95623464 @default.
- W4318677430 hasLocation W43186774301 @default.
- W4318677430 hasOpenAccess W4318677430 @default.
- W4318677430 hasPrimaryLocation W43186774301 @default.
- W4318677430 hasRelatedWork W1660343246 @default.
- W4318677430 hasRelatedWork W2026324356 @default.
- W4318677430 hasRelatedWork W2074501513 @default.
- W4318677430 hasRelatedWork W2574092225 @default.
- W4318677430 hasRelatedWork W2607131005 @default.
- W4318677430 hasRelatedWork W2613181115 @default.
- W4318677430 hasRelatedWork W2736127210 @default.
- W4318677430 hasRelatedWork W3108897387 @default.
- W4318677430 hasRelatedWork W3127654040 @default.
- W4318677430 hasRelatedWork W4200217704 @default.
- W4318677430 hasVolume "6" @default.
- W4318677430 isParatext "false" @default.
- W4318677430 isRetracted "false" @default.
- W4318677430 workType "article" @default.