Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318678049> ?p ?o ?g. }
- W4318678049 abstract "Abstract The advent of single-cell multi-omics sequencing technology makes it possible for re-searchers to leverage multiple modalities for individual cells and explore cell heterogeneity. However, the high dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challenging. Most of the existing computational methods for single-cell data analysis are either limited to single modality or lack flexibility and interpretability. In this study, we propose an interpretable deep learning method called multi-omic embedded topic model (moETM) to effectively perform integrative analysis of high-dimensional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the encoder for efficient variational inference and then employs multiple linear decoders to learn the multi-omic signatures of the gene regulatory programs. Through comprehensive experiments on public single-cell transcriptome and chromatin accessibility data (i.e., scRNA+scATAC), as well as scRNA and proteomic data (i.e., CITE-seq), moETM demonstrates superior performance compared with six state-of-the-art single-cell data analysis methods on seven publicly available datasets. By applying moETM to the scRNA+scATAC data in human bone marrow mononuclear cells (BMMCs), we identified sequence motifs corresponding to the transcription factors that regulate immune gene signatures. Applying moETM analysis to CITE-seq data from the COVID-19 patients revealed not only known immune cell-type-specific signatures but also composite multi-omic biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical perspectives." @default.
- W4318678049 created "2023-02-01" @default.
- W4318678049 creator A5023411013 @default.
- W4318678049 creator A5028842940 @default.
- W4318678049 creator A5049341927 @default.
- W4318678049 creator A5063378822 @default.
- W4318678049 creator A5074912658 @default.
- W4318678049 creator A5086529957 @default.
- W4318678049 date "2023-01-31" @default.
- W4318678049 modified "2023-10-17" @default.
- W4318678049 title "Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures" @default.
- W4318678049 cites W1489226586 @default.
- W4318678049 cites W1516111018 @default.
- W4318678049 cites W1544691147 @default.
- W4318678049 cites W1550073790 @default.
- W4318678049 cites W1602702667 @default.
- W4318678049 cites W1653658786 @default.
- W4318678049 cites W1709815505 @default.
- W4318678049 cites W1990272652 @default.
- W4318678049 cites W1993728343 @default.
- W4318678049 cites W2010457001 @default.
- W4318678049 cites W2059334761 @default.
- W4318678049 cites W2059980695 @default.
- W4318678049 cites W2093718923 @default.
- W4318678049 cites W2120043163 @default.
- W4318678049 cites W2123106337 @default.
- W4318678049 cites W2130410032 @default.
- W4318678049 cites W2131478115 @default.
- W4318678049 cites W2136453261 @default.
- W4318678049 cites W2138373169 @default.
- W4318678049 cites W2140063009 @default.
- W4318678049 cites W2144642115 @default.
- W4318678049 cites W2155059804 @default.
- W4318678049 cites W2173732482 @default.
- W4318678049 cites W2214074259 @default.
- W4318678049 cites W2232693424 @default.
- W4318678049 cites W2247766769 @default.
- W4318678049 cites W2301449312 @default.
- W4318678049 cites W2313183169 @default.
- W4318678049 cites W2321419840 @default.
- W4318678049 cites W2340761255 @default.
- W4318678049 cites W2522153768 @default.
- W4318678049 cites W2735891807 @default.
- W4318678049 cites W2739492614 @default.
- W4318678049 cites W2762804857 @default.
- W4318678049 cites W2765284830 @default.
- W4318678049 cites W2767749844 @default.
- W4318678049 cites W2800392236 @default.
- W4318678049 cites W2808305854 @default.
- W4318678049 cites W2889236955 @default.
- W4318678049 cites W2889326414 @default.
- W4318678049 cites W2895456557 @default.
- W4318678049 cites W2904174831 @default.
- W4318678049 cites W2905317377 @default.
- W4318678049 cites W2921502464 @default.
- W4318678049 cites W2947920363 @default.
- W4318678049 cites W2957445014 @default.
- W4318678049 cites W2963341956 @default.
- W4318678049 cites W3004467236 @default.
- W4318678049 cites W3005127469 @default.
- W4318678049 cites W3007172120 @default.
- W4318678049 cites W3027051073 @default.
- W4318678049 cites W3036267978 @default.
- W4318678049 cites W3043011398 @default.
- W4318678049 cites W3049325061 @default.
- W4318678049 cites W3090590397 @default.
- W4318678049 cites W3093858607 @default.
- W4318678049 cites W3106811464 @default.
- W4318678049 cites W3110498214 @default.
- W4318678049 cites W3113110940 @default.
- W4318678049 cites W3119507732 @default.
- W4318678049 cites W3127238141 @default.
- W4318678049 cites W3129866267 @default.
- W4318678049 cites W3130969319 @default.
- W4318678049 cites W3134238461 @default.
- W4318678049 cites W3138479716 @default.
- W4318678049 cites W3139265997 @default.
- W4318678049 cites W3144696998 @default.
- W4318678049 cites W3153732845 @default.
- W4318678049 cites W3154092881 @default.
- W4318678049 cites W3159800610 @default.
- W4318678049 cites W3162918056 @default.
- W4318678049 cites W3164692211 @default.
- W4318678049 cites W3195380306 @default.
- W4318678049 cites W3195918345 @default.
- W4318678049 cites W3196971188 @default.
- W4318678049 cites W3201518044 @default.
- W4318678049 cites W3203588026 @default.
- W4318678049 cites W3203731429 @default.
- W4318678049 cites W3214884901 @default.
- W4318678049 cites W4200581587 @default.
- W4318678049 cites W4220668517 @default.
- W4318678049 cites W4225278475 @default.
- W4318678049 cites W4225598893 @default.
- W4318678049 cites W4226218349 @default.
- W4318678049 cites W4235169531 @default.
- W4318678049 cites W4294805059 @default.
- W4318678049 cites W4297243391 @default.
- W4318678049 doi "https://doi.org/10.1101/2023.01.31.526312" @default.
- W4318678049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36778483" @default.