Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318683721> ?p ?o ?g. }
- W4318683721 endingPage "117312" @default.
- W4318683721 startingPage "117312" @default.
- W4318683721 abstract "Sensitivity analysis determines how perturbation or variation in the values of an independent variable affects a particular dependent variable. The present study attempts to comprehend the sensitivity of the static input parameters on the accuracy of the outputs in a hydrodynamic flood model, which subsequently improves the model accuracy. Hydrodynamic flood modeling is computationally strenuous and data-intensive. Moreover, the accuracy of the flood model outputs is extremely sensitive to the quality of hydrologic and hydraulic inputs, along with a set of static parameters that are traditionally assumed and primarily used for calibration. Therefore, we focus on developing a framework for global sensitivity analysis (GSA) of static input parameters in a 1D-2D coupled hydrodynamic flood modeling system. A set of numerical experiments is conducted by perturbing various combinations of input parameters from their standard (or observed) values to generate flow hydrographs. Nonparametric probability density functions (PDFs) of the river discharge at different locations are compared to calculate the Kullback-Leibler (KL) entropy or KL-divergence, which is used to quantify the sensitivity of the input parameters. We demonstrated the proposed framework on a highly flood-prone rural catchment of the Shilabati River in West Bengal, India, and infer that the sensitivity of the static input parameters is highly dynamic, and their importance varies spatially from the upstream to the downstream of the river. However, Manning's n values of the channel and the banks are significantly sensitive irrespective of the location in the river reach. We suggest that any flood modeling exercise should accompany a GSA, which sets a guideline for the modelers to prioritize the set of sensitive static input parameters during data monitoring, collection, and retrieval. This study is the first attempt at a GSA in a 1D-2D coupled hydrodynamic flood modeling system, whose importance cannot be over-emphasized in any flood modeling platform. The proposed novel framework is generic and can be implemented prior to flood risk analyses for any floodplain management exercise. All free and commercially-available flood models can incorporate the proposed framework for a GSA as an extension toolbox." @default.
- W4318683721 created "2023-02-01" @default.
- W4318683721 creator A5015720776 @default.
- W4318683721 creator A5079993367 @default.
- W4318683721 creator A5090492425 @default.
- W4318683721 date "2023-04-01" @default.
- W4318683721 modified "2023-10-12" @default.
- W4318683721 title "Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions" @default.
- W4318683721 cites W1559665021 @default.
- W4318683721 cites W1869785432 @default.
- W4318683721 cites W1965555277 @default.
- W4318683721 cites W1970872609 @default.
- W4318683721 cites W1972168428 @default.
- W4318683721 cites W1974756800 @default.
- W4318683721 cites W1978724679 @default.
- W4318683721 cites W1983770466 @default.
- W4318683721 cites W1995326710 @default.
- W4318683721 cites W1995875735 @default.
- W4318683721 cites W2030090958 @default.
- W4318683721 cites W2031724906 @default.
- W4318683721 cites W2033705484 @default.
- W4318683721 cites W2045488198 @default.
- W4318683721 cites W2098801303 @default.
- W4318683721 cites W2113670616 @default.
- W4318683721 cites W2118020555 @default.
- W4318683721 cites W2136426146 @default.
- W4318683721 cites W2144318794 @default.
- W4318683721 cites W2162413692 @default.
- W4318683721 cites W2209897355 @default.
- W4318683721 cites W2287992427 @default.
- W4318683721 cites W2314419926 @default.
- W4318683721 cites W2341416175 @default.
- W4318683721 cites W2557700663 @default.
- W4318683721 cites W2609096794 @default.
- W4318683721 cites W2771717702 @default.
- W4318683721 cites W2885795777 @default.
- W4318683721 cites W2899726877 @default.
- W4318683721 cites W2922155541 @default.
- W4318683721 cites W2945939341 @default.
- W4318683721 cites W2949131961 @default.
- W4318683721 cites W2950417805 @default.
- W4318683721 cites W2977797959 @default.
- W4318683721 cites W2990748662 @default.
- W4318683721 cites W2999393737 @default.
- W4318683721 cites W3038241375 @default.
- W4318683721 cites W3087458569 @default.
- W4318683721 cites W3168282580 @default.
- W4318683721 cites W3183485891 @default.
- W4318683721 cites W3199321016 @default.
- W4318683721 cites W3203015566 @default.
- W4318683721 cites W3204430205 @default.
- W4318683721 cites W3210382212 @default.
- W4318683721 cites W4223904618 @default.
- W4318683721 cites W4283520422 @default.
- W4318683721 cites W4302024231 @default.
- W4318683721 doi "https://doi.org/10.1016/j.jenvman.2023.117312" @default.
- W4318683721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36731405" @default.
- W4318683721 hasPublicationYear "2023" @default.
- W4318683721 type Work @default.
- W4318683721 citedByCount "4" @default.
- W4318683721 countsByYear W43186837212023 @default.
- W4318683721 crossrefType "journal-article" @default.
- W4318683721 hasAuthorship W4318683721A5015720776 @default.
- W4318683721 hasAuthorship W4318683721A5079993367 @default.
- W4318683721 hasAuthorship W4318683721A5090492425 @default.
- W4318683721 hasConcept C105795698 @default.
- W4318683721 hasConcept C127313418 @default.
- W4318683721 hasConcept C127413603 @default.
- W4318683721 hasConcept C154936535 @default.
- W4318683721 hasConcept C166957645 @default.
- W4318683721 hasConcept C171752962 @default.
- W4318683721 hasConcept C183195422 @default.
- W4318683721 hasConcept C187320778 @default.
- W4318683721 hasConcept C205649164 @default.
- W4318683721 hasConcept C21200559 @default.
- W4318683721 hasConcept C24326235 @default.
- W4318683721 hasConcept C33923547 @default.
- W4318683721 hasConcept C39432304 @default.
- W4318683721 hasConcept C41008148 @default.
- W4318683721 hasConcept C74256435 @default.
- W4318683721 hasConcept C76886044 @default.
- W4318683721 hasConceptScore W4318683721C105795698 @default.
- W4318683721 hasConceptScore W4318683721C127313418 @default.
- W4318683721 hasConceptScore W4318683721C127413603 @default.
- W4318683721 hasConceptScore W4318683721C154936535 @default.
- W4318683721 hasConceptScore W4318683721C166957645 @default.
- W4318683721 hasConceptScore W4318683721C171752962 @default.
- W4318683721 hasConceptScore W4318683721C183195422 @default.
- W4318683721 hasConceptScore W4318683721C187320778 @default.
- W4318683721 hasConceptScore W4318683721C205649164 @default.
- W4318683721 hasConceptScore W4318683721C21200559 @default.
- W4318683721 hasConceptScore W4318683721C24326235 @default.
- W4318683721 hasConceptScore W4318683721C33923547 @default.
- W4318683721 hasConceptScore W4318683721C39432304 @default.
- W4318683721 hasConceptScore W4318683721C41008148 @default.
- W4318683721 hasConceptScore W4318683721C74256435 @default.
- W4318683721 hasConceptScore W4318683721C76886044 @default.
- W4318683721 hasLocation W43186837211 @default.