Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318707911> ?p ?o ?g. }
- W4318707911 abstract "Abstract Most unsupervised or semisupervised hyperspectral anomaly detection (HAD) methods train background reconstruction models in the original spectral domain. However, due to the noise and spatial resolution limitations, there may be a lack of discrimination between backgrounds and anomalies. This makes it easy for the autoencoder to capture the low‐level features shared between the two, thereby increasing the difficulty of separating anomalies from the backgrounds, which runs counter to the purpose of HAD. To this end, the authors map the original spectrums to the fractional Fourier domain (FrFD) and reformulate it as a mapping task in which restoration errors are employed to distinguish background and anomaly. This study proposes a novel frequency‐to‐spectrum mapping generative adversarial network for HAD. Specifically, the depth separable features of backgrounds and anomalies are enhanced in the FrFD. Due to the semisupervised approach, FTSGAN needs to learn the embedded features of the backgrounds, thus mapping and restoring them from the FrFD to the original spectral domain. This strategy effectively prevents the model from focussing on the numerical equivalence of input and output, and restricts the ability of FTSGAN to restore anomalies. The comparison and analysis of the experiments verify that the proposed method is competitive." @default.
- W4318707911 created "2023-02-01" @default.
- W4318707911 creator A5005782558 @default.
- W4318707911 creator A5044689489 @default.
- W4318707911 creator A5066378186 @default.
- W4318707911 creator A5082228369 @default.
- W4318707911 creator A5087720070 @default.
- W4318707911 date "2023-01-30" @default.
- W4318707911 modified "2023-09-30" @default.
- W4318707911 title "Frequency‐to‐spectrum mapping GAN for semisupervised hyperspectral anomaly detection" @default.
- W4318707911 cites W2004491663 @default.
- W4318707911 cites W2024288510 @default.
- W4318707911 cites W2040078680 @default.
- W4318707911 cites W2047870694 @default.
- W4318707911 cites W2067897118 @default.
- W4318707911 cites W2074408893 @default.
- W4318707911 cites W2124463804 @default.
- W4318707911 cites W2147042314 @default.
- W4318707911 cites W2163129097 @default.
- W4318707911 cites W2288752886 @default.
- W4318707911 cites W2295576075 @default.
- W4318707911 cites W2510154752 @default.
- W4318707911 cites W2592141703 @default.
- W4318707911 cites W2740976805 @default.
- W4318707911 cites W2796629918 @default.
- W4318707911 cites W2962793481 @default.
- W4318707911 cites W2964469941 @default.
- W4318707911 cites W2975506318 @default.
- W4318707911 cites W2983563481 @default.
- W4318707911 cites W3008839601 @default.
- W4318707911 cites W3034185665 @default.
- W4318707911 cites W3038308280 @default.
- W4318707911 cites W3080792885 @default.
- W4318707911 cites W3087883793 @default.
- W4318707911 cites W3091247454 @default.
- W4318707911 cites W3112037842 @default.
- W4318707911 cites W3112538150 @default.
- W4318707911 cites W3114010851 @default.
- W4318707911 cites W3118914778 @default.
- W4318707911 cites W3124606680 @default.
- W4318707911 cites W3127230150 @default.
- W4318707911 cites W3134150402 @default.
- W4318707911 cites W3137199127 @default.
- W4318707911 cites W3139312239 @default.
- W4318707911 cites W3139578059 @default.
- W4318707911 cites W3153686193 @default.
- W4318707911 cites W3157052017 @default.
- W4318707911 cites W3164714368 @default.
- W4318707911 cites W3169569276 @default.
- W4318707911 cites W3186256209 @default.
- W4318707911 cites W3204653398 @default.
- W4318707911 cites W3205622792 @default.
- W4318707911 cites W3211570179 @default.
- W4318707911 cites W3214821343 @default.
- W4318707911 cites W3215017813 @default.
- W4318707911 cites W4200080982 @default.
- W4318707911 cites W4206819352 @default.
- W4318707911 cites W4210692941 @default.
- W4318707911 cites W4213185605 @default.
- W4318707911 cites W4214854488 @default.
- W4318707911 cites W4225378743 @default.
- W4318707911 cites W4225524821 @default.
- W4318707911 cites W4225582357 @default.
- W4318707911 cites W4229058281 @default.
- W4318707911 cites W4254182148 @default.
- W4318707911 cites W4282934494 @default.
- W4318707911 cites W4283311847 @default.
- W4318707911 cites W4285223668 @default.
- W4318707911 doi "https://doi.org/10.1049/cit2.12154" @default.
- W4318707911 hasPublicationYear "2023" @default.
- W4318707911 type Work @default.
- W4318707911 citedByCount "2" @default.
- W4318707911 countsByYear W43187079112023 @default.
- W4318707911 crossrefType "journal-article" @default.
- W4318707911 hasAuthorship W4318707911A5005782558 @default.
- W4318707911 hasAuthorship W4318707911A5044689489 @default.
- W4318707911 hasAuthorship W4318707911A5066378186 @default.
- W4318707911 hasAuthorship W4318707911A5082228369 @default.
- W4318707911 hasAuthorship W4318707911A5087720070 @default.
- W4318707911 hasBestOaLocation W43187079111 @default.
- W4318707911 hasConcept C101738243 @default.
- W4318707911 hasConcept C118615104 @default.
- W4318707911 hasConcept C121332964 @default.
- W4318707911 hasConcept C12997251 @default.
- W4318707911 hasConcept C134306372 @default.
- W4318707911 hasConcept C153180895 @default.
- W4318707911 hasConcept C154945302 @default.
- W4318707911 hasConcept C159078339 @default.
- W4318707911 hasConcept C19118579 @default.
- W4318707911 hasConcept C26873012 @default.
- W4318707911 hasConcept C2780069185 @default.
- W4318707911 hasConcept C31972630 @default.
- W4318707911 hasConcept C33923547 @default.
- W4318707911 hasConcept C41008148 @default.
- W4318707911 hasConcept C50644808 @default.
- W4318707911 hasConcept C70710897 @default.
- W4318707911 hasConcept C739882 @default.
- W4318707911 hasConceptScore W4318707911C101738243 @default.
- W4318707911 hasConceptScore W4318707911C118615104 @default.
- W4318707911 hasConceptScore W4318707911C121332964 @default.