Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318761800> ?p ?o ?g. }
- W4318761800 endingPage "161967" @default.
- W4318761800 startingPage "161967" @default.
- W4318761800 abstract "The investigation of ecosystem respiration (RE) and its vital influential factors along with the timely and accurate detection of spatiotemporal variations in RE are essential for guiding agricultural production planning. RE observation in the plot region is primarily based on the laborious chamber method. However, upscaling the spatial-temporal estimates of RE at the canopy scale is still challenging. The present study conducted a field experiment to determine RE using the chamber method. A multi-rotor unmanned aerial vehicle (UAV) equipped with a multispectral camera was employed to acquire the canopy spectral data of wheat during each RE test experiment. Moreover, the agronomic indicators of aboveground plant biomass, leaf area index, leaf dry mass as well as agrometeorological and soil data were measured simultaneously. The study analyzed the potential of multi-information for estimating RE at the field scale and proposed two strategies for RE estimation. In addition, a semiempirical, yet Lloyd and Taylor-based, remote sensing model (LT1-NIRV) was developed for estimating RE observed across different growth stages with a small margin of error (coefficient of determination [R2] = 0.60–0.64, root-mean-square error [RMSE] = 285.98–316.19 mg m−2 h−1). Further, five machine learning (ML) algorithms were utilized to independently estimate RE using two different datasets. The rigorous analyses, which included statistical comparison and cross-validation for estimating RE, confirmed that the XGBoost model, with the highest R2 and lowest RMSE (R2 = 0.88 and RMSE = 172.70 mg m−2 h−1), performed the best among the evaluated ML models. The LT1-NIRV model was less effective in estimating RE compared with the other ML models. Based on this comprehensive comparison analysis, the ML model can successfully estimate variations in wheat field RE using high-resolution UAV multispectral images and environmental factors from the wheat cropland system, thereby providing a valuable reference for monitoring and upscaling RE observations." @default.
- W4318761800 created "2023-02-02" @default.
- W4318761800 creator A5010333963 @default.
- W4318761800 creator A5017022122 @default.
- W4318761800 creator A5021863801 @default.
- W4318761800 creator A5024392675 @default.
- W4318761800 creator A5031679314 @default.
- W4318761800 creator A5058913315 @default.
- W4318761800 creator A5060842906 @default.
- W4318761800 creator A5067280628 @default.
- W4318761800 creator A5075923985 @default.
- W4318761800 creator A5080119274 @default.
- W4318761800 date "2023-05-01" @default.
- W4318761800 modified "2023-09-29" @default.
- W4318761800 title "Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland" @default.
- W4318761800 cites W1581204067 @default.
- W4318761800 cites W1895549337 @default.
- W4318761800 cites W1967688732 @default.
- W4318761800 cites W1975385848 @default.
- W4318761800 cites W1976075335 @default.
- W4318761800 cites W1976146199 @default.
- W4318761800 cites W1989030865 @default.
- W4318761800 cites W2080729698 @default.
- W4318761800 cites W2083707159 @default.
- W4318761800 cites W2089940084 @default.
- W4318761800 cites W2096018221 @default.
- W4318761800 cites W2108460995 @default.
- W4318761800 cites W2116354461 @default.
- W4318761800 cites W2133920545 @default.
- W4318761800 cites W2139519306 @default.
- W4318761800 cites W2153820558 @default.
- W4318761800 cites W2161783224 @default.
- W4318761800 cites W2312164556 @default.
- W4318761800 cites W2591220285 @default.
- W4318761800 cites W2743141067 @default.
- W4318761800 cites W2770750442 @default.
- W4318761800 cites W2793167150 @default.
- W4318761800 cites W2799456846 @default.
- W4318761800 cites W2801948551 @default.
- W4318761800 cites W2874838844 @default.
- W4318761800 cites W2901010423 @default.
- W4318761800 cites W2921592755 @default.
- W4318761800 cites W2978485176 @default.
- W4318761800 cites W3021384302 @default.
- W4318761800 cites W3132510631 @default.
- W4318761800 cites W3156715656 @default.
- W4318761800 cites W3205253527 @default.
- W4318761800 cites W3206639824 @default.
- W4318761800 cites W3207723747 @default.
- W4318761800 cites W4206839770 @default.
- W4318761800 cites W4229447915 @default.
- W4318761800 cites W4281254009 @default.
- W4318761800 cites W4283836435 @default.
- W4318761800 cites W4284992042 @default.
- W4318761800 cites W4309030160 @default.
- W4318761800 doi "https://doi.org/10.1016/j.scitotenv.2023.161967" @default.
- W4318761800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36737023" @default.
- W4318761800 hasPublicationYear "2023" @default.
- W4318761800 type Work @default.
- W4318761800 citedByCount "1" @default.
- W4318761800 countsByYear W43187618002023 @default.
- W4318761800 crossrefType "journal-article" @default.
- W4318761800 hasAuthorship W4318761800A5010333963 @default.
- W4318761800 hasAuthorship W4318761800A5017022122 @default.
- W4318761800 hasAuthorship W4318761800A5021863801 @default.
- W4318761800 hasAuthorship W4318761800A5024392675 @default.
- W4318761800 hasAuthorship W4318761800A5031679314 @default.
- W4318761800 hasAuthorship W4318761800A5058913315 @default.
- W4318761800 hasAuthorship W4318761800A5060842906 @default.
- W4318761800 hasAuthorship W4318761800A5067280628 @default.
- W4318761800 hasAuthorship W4318761800A5075923985 @default.
- W4318761800 hasAuthorship W4318761800A5080119274 @default.
- W4318761800 hasConcept C101000010 @default.
- W4318761800 hasConcept C105795698 @default.
- W4318761800 hasConcept C115540264 @default.
- W4318761800 hasConcept C128990827 @default.
- W4318761800 hasConcept C139945424 @default.
- W4318761800 hasConcept C18903297 @default.
- W4318761800 hasConcept C205649164 @default.
- W4318761800 hasConcept C25989453 @default.
- W4318761800 hasConcept C2778755073 @default.
- W4318761800 hasConcept C33923547 @default.
- W4318761800 hasConcept C39432304 @default.
- W4318761800 hasConcept C58640448 @default.
- W4318761800 hasConcept C62649853 @default.
- W4318761800 hasConcept C6557445 @default.
- W4318761800 hasConcept C86803240 @default.
- W4318761800 hasConceptScore W4318761800C101000010 @default.
- W4318761800 hasConceptScore W4318761800C105795698 @default.
- W4318761800 hasConceptScore W4318761800C115540264 @default.
- W4318761800 hasConceptScore W4318761800C128990827 @default.
- W4318761800 hasConceptScore W4318761800C139945424 @default.
- W4318761800 hasConceptScore W4318761800C18903297 @default.
- W4318761800 hasConceptScore W4318761800C205649164 @default.
- W4318761800 hasConceptScore W4318761800C25989453 @default.
- W4318761800 hasConceptScore W4318761800C2778755073 @default.
- W4318761800 hasConceptScore W4318761800C33923547 @default.
- W4318761800 hasConceptScore W4318761800C39432304 @default.