Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318776425> ?p ?o ?g. }
- W4318776425 endingPage "1904" @default.
- W4318776425 startingPage "1904" @default.
- W4318776425 abstract "The creation and training of artificial neural networks with a given accuracy makes it possible to identify patterns and hidden relationships between physical and technological parameters in the production of unique building materials, predict mechanical properties, and solve the problem of detecting, classifying, and segmenting existing defects. The detection of defects of various kinds on elements of building materials at the primary stages of production can improve the quality of construction and identify the cause of particular damage. The technology for detecting cracks in building material samples is of great importance in building monitoring, in pre-venting the spread of defective material. In this paper, we consider the use of the YOLOv4 convolutional neural network for crack detection on building material samples. This was based on the creation of its own empirical database of images of samples of aerated concrete. The number of images was increased by applying our own augmentation algorithm. Optimization of the parameters of the intellectual model based on the YOLOv4 convolutional neural network was performed. Experimental results show that the YOLOv4 model developed in this article has high precision in defect detection problems: AP@50 = 85% and AP@75 = 68%. It should be noted that the model was trained on its own set of data obtained by simulating various shooting conditions, rotation angles, object deformations, and light distortions through image processing methods, which made it possible to apply the developed algorithm in practice." @default.
- W4318776425 created "2023-02-02" @default.
- W4318776425 creator A5016148929 @default.
- W4318776425 creator A5016250067 @default.
- W4318776425 creator A5016847172 @default.
- W4318776425 creator A5019835980 @default.
- W4318776425 creator A5046633526 @default.
- W4318776425 creator A5048191087 @default.
- W4318776425 creator A5055041540 @default.
- W4318776425 creator A5055406141 @default.
- W4318776425 creator A5058916576 @default.
- W4318776425 creator A5072715138 @default.
- W4318776425 date "2023-02-01" @default.
- W4318776425 modified "2023-09-26" @default.
- W4318776425 title "Detecting Cracks in Aerated Concrete Samples Using a Convolutional Neural Network" @default.
- W4318776425 cites W2143336005 @default.
- W4318776425 cites W2753792608 @default.
- W4318776425 cites W2806828180 @default.
- W4318776425 cites W2898300628 @default.
- W4318776425 cites W2955735067 @default.
- W4318776425 cites W2971907226 @default.
- W4318776425 cites W2972414793 @default.
- W4318776425 cites W2990141317 @default.
- W4318776425 cites W2995193699 @default.
- W4318776425 cites W3012911920 @default.
- W4318776425 cites W3029857131 @default.
- W4318776425 cites W3036196168 @default.
- W4318776425 cites W3041982499 @default.
- W4318776425 cites W3042011474 @default.
- W4318776425 cites W3077812425 @default.
- W4318776425 cites W3081474404 @default.
- W4318776425 cites W3084020652 @default.
- W4318776425 cites W3096444215 @default.
- W4318776425 cites W3106985003 @default.
- W4318776425 cites W3108278732 @default.
- W4318776425 cites W3124547747 @default.
- W4318776425 cites W3124664719 @default.
- W4318776425 cites W3126906033 @default.
- W4318776425 cites W3134108147 @default.
- W4318776425 cites W3137951233 @default.
- W4318776425 cites W3153249728 @default.
- W4318776425 cites W3157931173 @default.
- W4318776425 cites W3212398396 @default.
- W4318776425 cites W4214711377 @default.
- W4318776425 cites W4223426948 @default.
- W4318776425 cites W4225546882 @default.
- W4318776425 cites W4280624362 @default.
- W4318776425 cites W4281399551 @default.
- W4318776425 cites W4282919620 @default.
- W4318776425 cites W4283157061 @default.
- W4318776425 cites W4283366218 @default.
- W4318776425 cites W4283457795 @default.
- W4318776425 cites W4283789959 @default.
- W4318776425 cites W4283834155 @default.
- W4318776425 cites W4285011089 @default.
- W4318776425 cites W4285155177 @default.
- W4318776425 cites W4297477506 @default.
- W4318776425 cites W4304585012 @default.
- W4318776425 cites W4304761861 @default.
- W4318776425 cites W4306391197 @default.
- W4318776425 cites W4307235837 @default.
- W4318776425 cites W4307556206 @default.
- W4318776425 cites W4312687768 @default.
- W4318776425 doi "https://doi.org/10.3390/app13031904" @default.
- W4318776425 hasPublicationYear "2023" @default.
- W4318776425 type Work @default.
- W4318776425 citedByCount "3" @default.
- W4318776425 countsByYear W43187764252023 @default.
- W4318776425 crossrefType "journal-article" @default.
- W4318776425 hasAuthorship W4318776425A5016148929 @default.
- W4318776425 hasAuthorship W4318776425A5016250067 @default.
- W4318776425 hasAuthorship W4318776425A5016847172 @default.
- W4318776425 hasAuthorship W4318776425A5019835980 @default.
- W4318776425 hasAuthorship W4318776425A5046633526 @default.
- W4318776425 hasAuthorship W4318776425A5048191087 @default.
- W4318776425 hasAuthorship W4318776425A5055041540 @default.
- W4318776425 hasAuthorship W4318776425A5055406141 @default.
- W4318776425 hasAuthorship W4318776425A5058916576 @default.
- W4318776425 hasAuthorship W4318776425A5072715138 @default.
- W4318776425 hasBestOaLocation W43187764251 @default.
- W4318776425 hasConcept C124101348 @default.
- W4318776425 hasConcept C127413603 @default.
- W4318776425 hasConcept C147176958 @default.
- W4318776425 hasConcept C153180895 @default.
- W4318776425 hasConcept C154945302 @default.
- W4318776425 hasConcept C177264268 @default.
- W4318776425 hasConcept C199360897 @default.
- W4318776425 hasConcept C2780028911 @default.
- W4318776425 hasConcept C41008148 @default.
- W4318776425 hasConcept C50644808 @default.
- W4318776425 hasConcept C81363708 @default.
- W4318776425 hasConceptScore W4318776425C124101348 @default.
- W4318776425 hasConceptScore W4318776425C127413603 @default.
- W4318776425 hasConceptScore W4318776425C147176958 @default.
- W4318776425 hasConceptScore W4318776425C153180895 @default.
- W4318776425 hasConceptScore W4318776425C154945302 @default.
- W4318776425 hasConceptScore W4318776425C177264268 @default.
- W4318776425 hasConceptScore W4318776425C199360897 @default.