Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318812262> ?p ?o ?g. }
- W4318812262 endingPage "247" @default.
- W4318812262 startingPage "231" @default.
- W4318812262 abstract "First-Trimester Ultrasound scans provide invaluable insight into early pregnancies. The scan is used to estimate the gestational age by providing a measurement of the Crown to Rump Length (CRL), it is a crucial scan as it informs obstetric practitioners of the optimal timing for any necessary interventions at the earliest point. Inter-observer variation creates problems for Obstetric Practitioners as any variation in the measurement of the CRL can carry complications to the fetus’ health. Existing machine learning systems to solve this problem are limited; this work details the creation of a machine learning pipeline that implements three Convolutional Neural Networks models (CNNs) to help identify the Crown and Rump regions in First-Trimester Ultrasound Images. The system segments the fetus in the image using a U-Net Model. The segmented image is then subject to an image classification model that implements a pre-trained CNN model, namely, VGG-16. This model is used to classify the segmented images into ‘Good’ and ‘Bad’. Finally, the segmented images are entered into a pre-trained ResNet34 model that identifies the Crown and Rump regions. This can be used by obstetric practitioners to provide an accurate CRL of the fetus and to comment on the actual development of the fetus from the First-trimester Ultrasound images. The system will mitigate issues with the estimation of the gestational age and reduce the inter-observer variations." @default.
- W4318812262 created "2023-02-02" @default.
- W4318812262 creator A5003631762 @default.
- W4318812262 creator A5041133074 @default.
- W4318812262 creator A5061759355 @default.
- W4318812262 creator A5068583006 @default.
- W4318812262 date "2022-01-01" @default.
- W4318812262 modified "2023-09-27" @default.
- W4318812262 title "Identification of Crown and Rump in First-Trimester Ultrasound Images Using Deep Convolutional Neural Network" @default.
- W4318812262 cites W1901129140 @default.
- W4318812262 cites W1967069632 @default.
- W4318812262 cites W2023012187 @default.
- W4318812262 cites W2047568922 @default.
- W4318812262 cites W2188156710 @default.
- W4318812262 cites W2768956845 @default.
- W4318812262 cites W2801609445 @default.
- W4318812262 cites W2890559952 @default.
- W4318812262 cites W2905023912 @default.
- W4318812262 cites W2905451100 @default.
- W4318812262 cites W2955805844 @default.
- W4318812262 cites W2999759831 @default.
- W4318812262 cites W3021454079 @default.
- W4318812262 cites W3071682211 @default.
- W4318812262 cites W3089526972 @default.
- W4318812262 cites W3090519764 @default.
- W4318812262 cites W3090817858 @default.
- W4318812262 cites W3091643389 @default.
- W4318812262 cites W3091860120 @default.
- W4318812262 cites W3127786468 @default.
- W4318812262 cites W3133631487 @default.
- W4318812262 cites W3134456151 @default.
- W4318812262 cites W3140854437 @default.
- W4318812262 cites W3151064326 @default.
- W4318812262 cites W3154203438 @default.
- W4318812262 cites W3159597990 @default.
- W4318812262 cites W3159875375 @default.
- W4318812262 cites W3171381060 @default.
- W4318812262 cites W3176221632 @default.
- W4318812262 cites W3184416411 @default.
- W4318812262 cites W3185729043 @default.
- W4318812262 cites W3186593818 @default.
- W4318812262 cites W3192818153 @default.
- W4318812262 cites W3194074498 @default.
- W4318812262 cites W3199187641 @default.
- W4318812262 cites W3199297386 @default.
- W4318812262 cites W3199364093 @default.
- W4318812262 cites W3217064948 @default.
- W4318812262 cites W4200166643 @default.
- W4318812262 cites W4206440813 @default.
- W4318812262 cites W4206979879 @default.
- W4318812262 cites W4207012013 @default.
- W4318812262 cites W4226173371 @default.
- W4318812262 cites W4226267190 @default.
- W4318812262 cites W4285301343 @default.
- W4318812262 cites W4301221287 @default.
- W4318812262 cites W4312543040 @default.
- W4318812262 doi "https://doi.org/10.1007/978-3-031-24801-6_17" @default.
- W4318812262 hasPublicationYear "2022" @default.
- W4318812262 type Work @default.
- W4318812262 citedByCount "0" @default.
- W4318812262 crossrefType "book-chapter" @default.
- W4318812262 hasAuthorship W4318812262A5003631762 @default.
- W4318812262 hasAuthorship W4318812262A5041133074 @default.
- W4318812262 hasAuthorship W4318812262A5061759355 @default.
- W4318812262 hasAuthorship W4318812262A5068583006 @default.
- W4318812262 hasConcept C126838900 @default.
- W4318812262 hasConcept C143753070 @default.
- W4318812262 hasConcept C147393917 @default.
- W4318812262 hasConcept C153180895 @default.
- W4318812262 hasConcept C154945302 @default.
- W4318812262 hasConcept C172680121 @default.
- W4318812262 hasConcept C2776038736 @default.
- W4318812262 hasConcept C2779234561 @default.
- W4318812262 hasConcept C3019714739 @default.
- W4318812262 hasConcept C31972630 @default.
- W4318812262 hasConcept C41008148 @default.
- W4318812262 hasConcept C54355233 @default.
- W4318812262 hasConcept C71924100 @default.
- W4318812262 hasConcept C81363708 @default.
- W4318812262 hasConcept C86803240 @default.
- W4318812262 hasConceptScore W4318812262C126838900 @default.
- W4318812262 hasConceptScore W4318812262C143753070 @default.
- W4318812262 hasConceptScore W4318812262C147393917 @default.
- W4318812262 hasConceptScore W4318812262C153180895 @default.
- W4318812262 hasConceptScore W4318812262C154945302 @default.
- W4318812262 hasConceptScore W4318812262C172680121 @default.
- W4318812262 hasConceptScore W4318812262C2776038736 @default.
- W4318812262 hasConceptScore W4318812262C2779234561 @default.
- W4318812262 hasConceptScore W4318812262C3019714739 @default.
- W4318812262 hasConceptScore W4318812262C31972630 @default.
- W4318812262 hasConceptScore W4318812262C41008148 @default.
- W4318812262 hasConceptScore W4318812262C54355233 @default.
- W4318812262 hasConceptScore W4318812262C71924100 @default.
- W4318812262 hasConceptScore W4318812262C81363708 @default.
- W4318812262 hasConceptScore W4318812262C86803240 @default.
- W4318812262 hasLocation W43188122621 @default.
- W4318812262 hasOpenAccess W4318812262 @default.
- W4318812262 hasPrimaryLocation W43188122621 @default.