Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318814279> ?p ?o ?g. }
- W4318814279 endingPage "812" @default.
- W4318814279 startingPage "812" @default.
- W4318814279 abstract "High-resolution soil moisture (SM) information is essential for regional to global hydrological and agricultural applications. The Soil Moisture Active Passive (SMAP) offers daily global composites of SM at coarse-resolution 9 and 36 km, with data gaps limiting its local application to depict SM distribution in detail. To overcome the aforementioned problem, a downscaling and gap-filling novel approach was adopted, using random forest (RF) and artificial neural network (ANN) algorithms to downscale SMAP SM data, using land-surface variables from moderate-resolution imaging spectroradiometer (MODIS) onboard Aqua and Terra satellites from the years 2018 to 2019. Firstly, four combinations (RF+Aqua, RF+Terra, ANN+Aqua, and ANN+Terra) were developed. Each combination downscaled SMAP SM at a high resolution (1 km). These combinations were evaluated by using error matrices and in situ SM at different scales in the ShanDian River (SDR) Basin. The combination RF+Terra showed a better performance, with a low averaged unbiased root mean square error (ubRMSE) of 0.034 m3/m3 and high averaged correlation (R) of 0.54 against the small-, medium-, and large-scale in situ SM. Secondly, the impact of various land covers was examined by using downscaled SMAP and in situ SM. Vegetation attenuation makes woodland more error-prone and less correlated than grassland and farmland. Finally, the RF+Terra and ANN+Terra combinations were selected for their higher accuracy in gap filling of downscaled SMAP SM. The gap-filled downscaled SMAP SM results were compared spatially with China Land Data Assimilation System (CLDAS) SM and in situ SM. The RF+Terra combination outcomes were more humid than ANN+Terra combination results in the SDR basin. Overall, the RF+Terra combination gap-filled data showed high R (0.40) and less ubRMSE (0.064 m3/m3) against in situ SM, which was close to CLDAS SM. This study showed that the proposed RF- and ANN-based downscaling methods have a potential to improve the spatial resolution and gap-filling of SMAP SM at a high resolution (1 km)." @default.
- W4318814279 created "2023-02-02" @default.
- W4318814279 creator A5016387589 @default.
- W4318814279 creator A5018766595 @default.
- W4318814279 creator A5049550441 @default.
- W4318814279 creator A5060479743 @default.
- W4318814279 creator A5070134412 @default.
- W4318814279 creator A5075355839 @default.
- W4318814279 creator A5077068949 @default.
- W4318814279 creator A5082480209 @default.
- W4318814279 date "2023-01-31" @default.
- W4318814279 modified "2023-10-18" @default.
- W4318814279 title "Spatial Downscaling and Gap-Filling of SMAP Soil Moisture to High Resolution Using MODIS Surface Variables and Machine Learning Approaches over ShanDian River Basin, China" @default.
- W4318814279 cites W1926971900 @default.
- W4318814279 cites W1977473269 @default.
- W4318814279 cites W1982206826 @default.
- W4318814279 cites W1982623967 @default.
- W4318814279 cites W1986286235 @default.
- W4318814279 cites W1988810672 @default.
- W4318814279 cites W1995598225 @default.
- W4318814279 cites W1999411300 @default.
- W4318814279 cites W2001351094 @default.
- W4318814279 cites W2002011878 @default.
- W4318814279 cites W2003578656 @default.
- W4318814279 cites W2010729915 @default.
- W4318814279 cites W2027554150 @default.
- W4318814279 cites W2028304417 @default.
- W4318814279 cites W2039348932 @default.
- W4318814279 cites W2048336910 @default.
- W4318814279 cites W2068976381 @default.
- W4318814279 cites W2097498299 @default.
- W4318814279 cites W2105782107 @default.
- W4318814279 cites W2114711020 @default.
- W4318814279 cites W2116779222 @default.
- W4318814279 cites W2140622444 @default.
- W4318814279 cites W2142140549 @default.
- W4318814279 cites W2146149230 @default.
- W4318814279 cites W2147241431 @default.
- W4318814279 cites W2150708430 @default.
- W4318814279 cites W2150956979 @default.
- W4318814279 cites W2166609657 @default.
- W4318814279 cites W2168663102 @default.
- W4318814279 cites W2175379292 @default.
- W4318814279 cites W2188200382 @default.
- W4318814279 cites W2294083781 @default.
- W4318814279 cites W2304445877 @default.
- W4318814279 cites W2399809112 @default.
- W4318814279 cites W2496225726 @default.
- W4318814279 cites W2531629110 @default.
- W4318814279 cites W2569552450 @default.
- W4318814279 cites W2590407554 @default.
- W4318814279 cites W2599868771 @default.
- W4318814279 cites W2606762649 @default.
- W4318814279 cites W2743180032 @default.
- W4318814279 cites W2744124188 @default.
- W4318814279 cites W2762180336 @default.
- W4318814279 cites W2786248992 @default.
- W4318814279 cites W2792192198 @default.
- W4318814279 cites W2804415560 @default.
- W4318814279 cites W2811382599 @default.
- W4318814279 cites W2904758662 @default.
- W4318814279 cites W2928993238 @default.
- W4318814279 cites W2953304784 @default.
- W4318814279 cites W2953495101 @default.
- W4318814279 cites W2983418484 @default.
- W4318814279 cites W2990731056 @default.
- W4318814279 cites W3003550074 @default.
- W4318814279 cites W3004747764 @default.
- W4318814279 cites W3027170800 @default.
- W4318814279 cites W3043790022 @default.
- W4318814279 cites W3094776455 @default.
- W4318814279 cites W3096184163 @default.
- W4318814279 cites W3116621825 @default.
- W4318814279 cites W3118293400 @default.
- W4318814279 cites W3129434521 @default.
- W4318814279 cites W3130200124 @default.
- W4318814279 cites W3140583571 @default.
- W4318814279 cites W3153459214 @default.
- W4318814279 cites W3197848683 @default.
- W4318814279 cites W3200802708 @default.
- W4318814279 cites W4210826704 @default.
- W4318814279 cites W4212805403 @default.
- W4318814279 cites W4224279739 @default.
- W4318814279 cites W4244340606 @default.
- W4318814279 cites W4288877484 @default.
- W4318814279 cites W4291172155 @default.
- W4318814279 cites W4318479934 @default.
- W4318814279 doi "https://doi.org/10.3390/rs15030812" @default.
- W4318814279 hasPublicationYear "2023" @default.
- W4318814279 type Work @default.
- W4318814279 citedByCount "8" @default.
- W4318814279 countsByYear W43188142792023 @default.
- W4318814279 crossrefType "journal-article" @default.
- W4318814279 hasAuthorship W4318814279A5016387589 @default.
- W4318814279 hasAuthorship W4318814279A5018766595 @default.
- W4318814279 hasAuthorship W4318814279A5049550441 @default.
- W4318814279 hasAuthorship W4318814279A5060479743 @default.
- W4318814279 hasAuthorship W4318814279A5070134412 @default.