Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318815561> ?p ?o ?g. }
- W4318815561 endingPage "62" @default.
- W4318815561 startingPage "62" @default.
- W4318815561 abstract "Concerns about cybersecurity and attack methods have risen in the information age. Many techniques are used to detect or deter attacks, such as intrusion detection systems (IDSs), that help achieve security goals, such as detecting malicious attacks before they enter the system and classifying them as malicious activities. However, the IDS approaches have shortcomings in misclassifying novel attacks or adapting to emerging environments, affecting their accuracy and increasing false alarms. To solve this problem, researchers have recommended using machine learning approaches as engines for IDSs to increase their efficacy. Machine-learning techniques are supposed to automatically detect the main distinctions between normal and malicious data, even novel attacks, with high accuracy. However, carefully designed adversarial input perturbations during the training or testing phases can significantly affect their predictions and classifications. Adversarial machine learning (AML) poses many cybersecurity threats in numerous sectors that use machine-learning-based classification systems, such as deceiving IDS to misclassify network packets. Thus, this paper presents a survey of adversarial machine-learning strategies and defenses. It starts by highlighting various types of adversarial attacks that can affect the IDS and then presents the defense strategies to decrease or eliminate the influence of these attacks. Finally, the gaps in the existing literature and future research directions are presented." @default.
- W4318815561 created "2023-02-02" @default.
- W4318815561 creator A5038236474 @default.
- W4318815561 creator A5067180320 @default.
- W4318815561 date "2023-01-31" @default.
- W4318815561 modified "2023-10-09" @default.
- W4318815561 title "Adversarial Machine Learning Attacks against Intrusion Detection Systems: A Survey on Strategies and Defense" @default.
- W4318815561 cites W2026258420 @default.
- W4318815561 cites W2051267297 @default.
- W4318815561 cites W2095577883 @default.
- W4318815561 cites W2099940443 @default.
- W4318815561 cites W2116286374 @default.
- W4318815561 cites W2130817593 @default.
- W4318815561 cites W2150847526 @default.
- W4318815561 cites W2180612164 @default.
- W4318815561 cites W2243397390 @default.
- W4318815561 cites W2293768274 @default.
- W4318815561 cites W2296509296 @default.
- W4318815561 cites W2535690855 @default.
- W4318815561 cites W2535873859 @default.
- W4318815561 cites W2546923044 @default.
- W4318815561 cites W2583814745 @default.
- W4318815561 cites W2603766943 @default.
- W4318815561 cites W2604505099 @default.
- W4318815561 cites W2607219512 @default.
- W4318815561 cites W2625570400 @default.
- W4318815561 cites W2746600820 @default.
- W4318815561 cites W2747144285 @default.
- W4318815561 cites W2789828921 @default.
- W4318815561 cites W2800244495 @default.
- W4318815561 cites W2844602024 @default.
- W4318815561 cites W2853623529 @default.
- W4318815561 cites W2908403421 @default.
- W4318815561 cites W2908954810 @default.
- W4318815561 cites W2930249865 @default.
- W4318815561 cites W2946344298 @default.
- W4318815561 cites W2962700793 @default.
- W4318815561 cites W2962933288 @default.
- W4318815561 cites W2963100962 @default.
- W4318815561 cites W2963165448 @default.
- W4318815561 cites W2963178695 @default.
- W4318815561 cites W2963184668 @default.
- W4318815561 cites W2963391384 @default.
- W4318815561 cites W2963416329 @default.
- W4318815561 cites W2980576170 @default.
- W4318815561 cites W2981025625 @default.
- W4318815561 cites W2982725903 @default.
- W4318815561 cites W2991408690 @default.
- W4318815561 cites W3001147583 @default.
- W4318815561 cites W3007481080 @default.
- W4318815561 cites W3008365266 @default.
- W4318815561 cites W3008559557 @default.
- W4318815561 cites W3016974523 @default.
- W4318815561 cites W3017217726 @default.
- W4318815561 cites W3018495625 @default.
- W4318815561 cites W3019963807 @default.
- W4318815561 cites W3021340315 @default.
- W4318815561 cites W3045570840 @default.
- W4318815561 cites W3046918297 @default.
- W4318815561 cites W3086737406 @default.
- W4318815561 cites W3087836803 @default.
- W4318815561 cites W3096366160 @default.
- W4318815561 cites W3096929904 @default.
- W4318815561 cites W3101155090 @default.
- W4318815561 cites W3103557498 @default.
- W4318815561 cites W3109103125 @default.
- W4318815561 cites W3111088413 @default.
- W4318815561 cites W3115696055 @default.
- W4318815561 cites W3123705133 @default.
- W4318815561 cites W3158598208 @default.
- W4318815561 cites W3164428348 @default.
- W4318815561 cites W3168005866 @default.
- W4318815561 cites W3171785101 @default.
- W4318815561 cites W3196506678 @default.
- W4318815561 cites W3197410585 @default.
- W4318815561 cites W3198511875 @default.
- W4318815561 cites W3209051372 @default.
- W4318815561 cites W4221064655 @default.
- W4318815561 cites W4247200422 @default.
- W4318815561 cites W4298217332 @default.
- W4318815561 cites W433644524 @default.
- W4318815561 cites W2969215546 @default.
- W4318815561 doi "https://doi.org/10.3390/fi15020062" @default.
- W4318815561 hasPublicationYear "2023" @default.
- W4318815561 type Work @default.
- W4318815561 citedByCount "7" @default.
- W4318815561 countsByYear W43188155612023 @default.
- W4318815561 crossrefType "journal-article" @default.
- W4318815561 hasAuthorship W4318815561A5038236474 @default.
- W4318815561 hasAuthorship W4318815561A5067180320 @default.
- W4318815561 hasBestOaLocation W43188155611 @default.
- W4318815561 hasConcept C119857082 @default.
- W4318815561 hasConcept C127313418 @default.
- W4318815561 hasConcept C154945302 @default.
- W4318815561 hasConcept C158251709 @default.
- W4318815561 hasConcept C158379750 @default.
- W4318815561 hasConcept C17409809 @default.
- W4318815561 hasConcept C2778403875 @default.