Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318817670> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4318817670 abstract "ABSTRACT Introduction Despite a prevalence of 3-5% among adults, asymptomatic left ventricular systolic dysfunction (LVSD) remains underdiagnosed. There is a critical need for an accurate and widely accessible screening strategy for LVSD, given its association with preventable morbidity and premature mortality. A novel deep learning approach has demonstrated the ability to detect LVSD directly from ECG images, with retrospective validation across multiple institutions. There is a lack of prospective validation. In this pilot study, we evaluate the feasibility of screening and recruiting individuals for prospective echocardiography based on an image-based artificial intelligence (AI)-ECG algorithm applied to the ECG repository at a large academic medical center. Research Methods and Analysis This is the protocol for a prospective cohort study in outpatient primary care clinics of the Yale New Haven Hospital (YNHH). Adult patients who have undergone a 12-lead ECG without subsequent echocardiogram as a part of routine clinical care within 90 days of the ECG will be identified in the electronic health record (EHR). The AI-ECG model for LVSD will be deployed to YNHH ECG repository to define the probability of LVSD, identifying 5 patients each with high and low probability of LVSD. After discussion with primary care physicians, and subsequent contact by the study team, screened participants will be invited for and undergo an echocardiogram. The study participants and the cardiologists conducting the echocardiograms will be blinded to the results of the AI-ECG screen. The analysis will focus on feasibility metrics: the proportion (i) of all patients undergoing ECGs who have high probability of LVSD without subsequent echocardiogram, (ii) of patients who agree to participate in the study, and (iii) that undergo an echocardiogram. A descriptive exploration of the comparison of the AI-ECG and echocardiogram results will also be reported. Ethics and Dissemination All patient EHR data required for assessing eligibility and conducting the AI-ECG screening will be accessed through secure servers approved for protected health information. Potential participants will only be contacted after they have discussed the study information with their primary care physician. All participants will be required to provide written informed consent before participation and data will be deidentified prior to analysis. This study protocol has been approved by the Yale Institutional Review Board (Protocol Number: 2000034006) and has been registered at ClinicalTrials.gov (Identifier: NCT05630170 ). The results of the future validation study will be published in peer-reviewed journals and summaries will be provided to the study participants." @default.
- W4318817670 created "2023-02-02" @default.
- W4318817670 creator A5001943409 @default.
- W4318817670 creator A5017974764 @default.
- W4318817670 creator A5038095535 @default.
- W4318817670 creator A5040096171 @default.
- W4318817670 creator A5043198554 @default.
- W4318817670 creator A5062037359 @default.
- W4318817670 creator A5064308322 @default.
- W4318817670 creator A5070205374 @default.
- W4318817670 creator A5078559909 @default.
- W4318817670 creator A5084546552 @default.
- W4318817670 creator A5088802557 @default.
- W4318817670 date "2023-01-31" @default.
- W4318817670 modified "2023-10-14" @default.
- W4318817670 title "Study Protocol for the Pilot Evaluation for SMartphone-adaptable Artificial Intelligence for PRediction and DeTection of Left Ventricular Systolic Dysfunction (The SMART-LV Pilot Study Protocol)" @default.
- W4318817670 cites W1489075861 @default.
- W4318817670 cites W1570828701 @default.
- W4318817670 cites W2059920038 @default.
- W4318817670 cites W2469805673 @default.
- W4318817670 cites W2901226889 @default.
- W4318817670 cites W3020119882 @default.
- W4318817670 cites W3112316946 @default.
- W4318817670 cites W3207866969 @default.
- W4318817670 cites W4281750051 @default.
- W4318817670 doi "https://doi.org/10.1101/2023.01.30.23285120" @default.
- W4318817670 hasPublicationYear "2023" @default.
- W4318817670 type Work @default.
- W4318817670 citedByCount "0" @default.
- W4318817670 crossrefType "posted-content" @default.
- W4318817670 hasAuthorship W4318817670A5001943409 @default.
- W4318817670 hasAuthorship W4318817670A5017974764 @default.
- W4318817670 hasAuthorship W4318817670A5038095535 @default.
- W4318817670 hasAuthorship W4318817670A5040096171 @default.
- W4318817670 hasAuthorship W4318817670A5043198554 @default.
- W4318817670 hasAuthorship W4318817670A5062037359 @default.
- W4318817670 hasAuthorship W4318817670A5064308322 @default.
- W4318817670 hasAuthorship W4318817670A5070205374 @default.
- W4318817670 hasAuthorship W4318817670A5078559909 @default.
- W4318817670 hasAuthorship W4318817670A5084546552 @default.
- W4318817670 hasAuthorship W4318817670A5088802557 @default.
- W4318817670 hasBestOaLocation W43188176701 @default.
- W4318817670 hasConcept C126322002 @default.
- W4318817670 hasConcept C142724271 @default.
- W4318817670 hasConcept C154945302 @default.
- W4318817670 hasConcept C164705383 @default.
- W4318817670 hasConcept C188816634 @default.
- W4318817670 hasConcept C194828623 @default.
- W4318817670 hasConcept C204787440 @default.
- W4318817670 hasConcept C2777910003 @default.
- W4318817670 hasConcept C2780040984 @default.
- W4318817670 hasConcept C2780385302 @default.
- W4318817670 hasConcept C2781381097 @default.
- W4318817670 hasConcept C41008148 @default.
- W4318817670 hasConcept C71924100 @default.
- W4318817670 hasConceptScore W4318817670C126322002 @default.
- W4318817670 hasConceptScore W4318817670C142724271 @default.
- W4318817670 hasConceptScore W4318817670C154945302 @default.
- W4318817670 hasConceptScore W4318817670C164705383 @default.
- W4318817670 hasConceptScore W4318817670C188816634 @default.
- W4318817670 hasConceptScore W4318817670C194828623 @default.
- W4318817670 hasConceptScore W4318817670C204787440 @default.
- W4318817670 hasConceptScore W4318817670C2777910003 @default.
- W4318817670 hasConceptScore W4318817670C2780040984 @default.
- W4318817670 hasConceptScore W4318817670C2780385302 @default.
- W4318817670 hasConceptScore W4318817670C2781381097 @default.
- W4318817670 hasConceptScore W4318817670C41008148 @default.
- W4318817670 hasConceptScore W4318817670C71924100 @default.
- W4318817670 hasLocation W43188176701 @default.
- W4318817670 hasOpenAccess W4318817670 @default.
- W4318817670 hasPrimaryLocation W43188176701 @default.
- W4318817670 hasRelatedWork W1981438671 @default.
- W4318817670 hasRelatedWork W1982080406 @default.
- W4318817670 hasRelatedWork W2017455129 @default.
- W4318817670 hasRelatedWork W2033858070 @default.
- W4318817670 hasRelatedWork W2055387312 @default.
- W4318817670 hasRelatedWork W2357296145 @default.
- W4318817670 hasRelatedWork W2410354677 @default.
- W4318817670 hasRelatedWork W2411373842 @default.
- W4318817670 hasRelatedWork W2810192095 @default.
- W4318817670 hasRelatedWork W2077712728 @default.
- W4318817670 isParatext "false" @default.
- W4318817670 isRetracted "false" @default.
- W4318817670 workType "article" @default.