Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318817963> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4318817963 abstract "ABSTRACT Statistical analyses in high-dimensional omics data are often hampered by the presence of batch effects (BEs) and missing values (MVs), but the interaction between these two issues is not well-studied nor understood. MVs may manifest as a BE when their proportions differ across batches. These are termed as Batch-Effect Associated Missing values (BEAMs). We hypothesized that BEAMs in data may introduce bias which can impede the performance of missing value imputation (MVI). To test this, we simulated data with two batches, then introduced over 100 iterations, either 20% and 40% MVs in each batch (BEAMs) or 30% in both (control). K-nearest neighbours (KNN) was then used to perform MVI, in a typical global approach (M1) and a supposed superior batch-sensitized approach (M2). BEs were then corrected using ComBat. The effectiveness of the MVI was evaluated by its imputation accuracy and true and false positive rates. Notably, when BEAMs existed, M2 was generally undesirable as the differing application of MV filtering in M1 and M2 strategies resulted in an overall coverage deficiency. Additionally, both M1 and M2 strategies suffered in the presence of BEAMs, highlighting the need for a novel approach to handle MVI in data with BEAMs. Author summary Data in high-throughput omics data are often combined from different sources (batches), which creates batch effects in the data. Missing values are a common occurrence in these data, and their proportions are assumed to be equal across batches. However, instances exist when these proportions vary between batches, such as one batch having more missing values than another, resulting in batch effect associated missing values. Missing values are often dealt with through missing value imputation, but whether the variation in missing value proportions across batches affects imputation outcomes is unknown. In this paper, we investigate the consequence of performing imputation when this issue persists. We simulated data with equal and unequal missing value proportions, then assessed the performance of k-nearest neighbours imputation by its imputation accuracy and downstream analysis outcomes. This revealed that unequal missing value proportions worsens imputation and establishes the need for smarter imputation strategies to handle this complication." @default.
- W4318817963 created "2023-02-02" @default.
- W4318817963 creator A5054040512 @default.
- W4318817963 creator A5090984265 @default.
- W4318817963 date "2023-01-31" @default.
- W4318817963 modified "2023-10-14" @default.
- W4318817963 title "Uncovering the consequences of batch effect associated missing values in omics data analysis" @default.
- W4318817963 cites W1910270758 @default.
- W4318817963 cites W1968063944 @default.
- W4318817963 cites W1986849266 @default.
- W4318817963 cites W2000403772 @default.
- W4318817963 cites W2049446938 @default.
- W4318817963 cites W2054294074 @default.
- W4318817963 cites W2060002238 @default.
- W4318817963 cites W2062551369 @default.
- W4318817963 cites W2079752406 @default.
- W4318817963 cites W2096192437 @default.
- W4318817963 cites W2096863518 @default.
- W4318817963 cites W2099598705 @default.
- W4318817963 cites W2107665951 @default.
- W4318817963 cites W2121536973 @default.
- W4318817963 cites W2125419939 @default.
- W4318817963 cites W2147774652 @default.
- W4318817963 cites W2162772535 @default.
- W4318817963 cites W2169353806 @default.
- W4318817963 cites W2515569507 @default.
- W4318817963 cites W2590976943 @default.
- W4318817963 cites W2593885388 @default.
- W4318817963 cites W2603756957 @default.
- W4318817963 cites W2769195606 @default.
- W4318817963 cites W2973336097 @default.
- W4318817963 cites W3013516198 @default.
- W4318817963 cites W3032989484 @default.
- W4318817963 cites W3124177967 @default.
- W4318817963 cites W3197003309 @default.
- W4318817963 cites W4214777843 @default.
- W4318817963 doi "https://doi.org/10.1101/2023.01.30.526187" @default.
- W4318817963 hasPublicationYear "2023" @default.
- W4318817963 type Work @default.
- W4318817963 citedByCount "1" @default.
- W4318817963 countsByYear W43188179632023 @default.
- W4318817963 crossrefType "posted-content" @default.
- W4318817963 hasAuthorship W4318817963A5054040512 @default.
- W4318817963 hasAuthorship W4318817963A5090984265 @default.
- W4318817963 hasBestOaLocation W43188179631 @default.
- W4318817963 hasConcept C105795698 @default.
- W4318817963 hasConcept C124101348 @default.
- W4318817963 hasConcept C33923547 @default.
- W4318817963 hasConcept C41008148 @default.
- W4318817963 hasConcept C58041806 @default.
- W4318817963 hasConcept C9357733 @default.
- W4318817963 hasConceptScore W4318817963C105795698 @default.
- W4318817963 hasConceptScore W4318817963C124101348 @default.
- W4318817963 hasConceptScore W4318817963C33923547 @default.
- W4318817963 hasConceptScore W4318817963C41008148 @default.
- W4318817963 hasConceptScore W4318817963C58041806 @default.
- W4318817963 hasConceptScore W4318817963C9357733 @default.
- W4318817963 hasLocation W43188179631 @default.
- W4318817963 hasOpenAccess W4318817963 @default.
- W4318817963 hasPrimaryLocation W43188179631 @default.
- W4318817963 hasRelatedWork W1574575415 @default.
- W4318817963 hasRelatedWork W2024529227 @default.
- W4318817963 hasRelatedWork W2081476516 @default.
- W4318817963 hasRelatedWork W2181530120 @default.
- W4318817963 hasRelatedWork W2581984549 @default.
- W4318817963 hasRelatedWork W3028371478 @default.
- W4318817963 hasRelatedWork W3144172081 @default.
- W4318817963 hasRelatedWork W3179858851 @default.
- W4318817963 hasRelatedWork W4211215373 @default.
- W4318817963 hasRelatedWork W3123177881 @default.
- W4318817963 isParatext "false" @default.
- W4318817963 isRetracted "false" @default.
- W4318817963 workType "article" @default.