Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318818317> ?p ?o ?g. }
- W4318818317 endingPage "96" @default.
- W4318818317 startingPage "83" @default.
- W4318818317 abstract "Over the last decade, tourism industry is exploring the latest technologies to improve the customer experience and enhance customer satisfaction. In order to address the customer demands and business, tourism industry embraces to redefine their products and services using deep learning models and big data analytics. Deep learning-based model can be used to measure customer satisfaction, perception and behavior utilizing sentiment analysis, emotion analysis, and data analysis. Big data analytics in tourism can improve the overall tourism business operations and services. Deep learning techniques with big data analytics not only helps in developing the economical tourism models but also analyze the impact of various environmental factors on tourism planning and travel demand. In addition, these techniques are helpful in estimation of tourist seasonal demands, market price strategies and data analysis automation. Deep learning using data analytics can bring a paradigm shift in the tourism industry by offering personalized recommendations with budget specific packages based on customer past travel, reviews and experience. In this chapter, we will briefly analyze the impact of deep learning in tourism sector in terms of innovation, commercialization and profitability of the business. In addition, we will also review the advancement and potential of the deep learning-based methods with big data analytics in tourism industry in terms of customer overall experience." @default.
- W4318818317 created "2023-02-02" @default.
- W4318818317 creator A5016369641 @default.
- W4318818317 creator A5026433403 @default.
- W4318818317 date "2023-01-01" @default.
- W4318818317 modified "2023-10-14" @default.
- W4318818317 title "Impact of Deep Learning Models for Technology Sustainability in Tourism Using Big Data Analytics" @default.
- W4318818317 cites W1908656564 @default.
- W4318818317 cites W2618416470 @default.
- W4318818317 cites W2765183831 @default.
- W4318818317 cites W2789511524 @default.
- W4318818317 cites W2890570516 @default.
- W4318818317 cites W2896054874 @default.
- W4318818317 cites W2899093299 @default.
- W4318818317 cites W2902499798 @default.
- W4318818317 cites W2907605034 @default.
- W4318818317 cites W2939094371 @default.
- W4318818317 cites W2951559648 @default.
- W4318818317 cites W2956917287 @default.
- W4318818317 cites W2999886233 @default.
- W4318818317 cites W3014818300 @default.
- W4318818317 cites W3020464521 @default.
- W4318818317 cites W3023022844 @default.
- W4318818317 cites W3029460780 @default.
- W4318818317 cites W3032634577 @default.
- W4318818317 cites W3035597798 @default.
- W4318818317 cites W3035738233 @default.
- W4318818317 cites W3042723358 @default.
- W4318818317 cites W3091272974 @default.
- W4318818317 cites W3108572466 @default.
- W4318818317 cites W3110460191 @default.
- W4318818317 cites W3120051158 @default.
- W4318818317 cites W3132370575 @default.
- W4318818317 cites W3136409724 @default.
- W4318818317 cites W3169175990 @default.
- W4318818317 cites W3176185310 @default.
- W4318818317 cites W974480840 @default.
- W4318818317 doi "https://doi.org/10.1007/978-981-19-5723-9_6" @default.
- W4318818317 hasPublicationYear "2023" @default.
- W4318818317 type Work @default.
- W4318818317 citedByCount "5" @default.
- W4318818317 countsByYear W43188183172023 @default.
- W4318818317 crossrefType "book-chapter" @default.
- W4318818317 hasAuthorship W4318818317A5016369641 @default.
- W4318818317 hasAuthorship W4318818317A5026433403 @default.
- W4318818317 hasConcept C108583219 @default.
- W4318818317 hasConcept C124101348 @default.
- W4318818317 hasConcept C125308379 @default.
- W4318818317 hasConcept C144133560 @default.
- W4318818317 hasConcept C154945302 @default.
- W4318818317 hasConcept C162853370 @default.
- W4318818317 hasConcept C166957645 @default.
- W4318818317 hasConcept C189076506 @default.
- W4318818317 hasConcept C18918823 @default.
- W4318818317 hasConcept C191511416 @default.
- W4318818317 hasConcept C205649164 @default.
- W4318818317 hasConcept C2522767166 @default.
- W4318818317 hasConcept C2780625559 @default.
- W4318818317 hasConcept C37952496 @default.
- W4318818317 hasConcept C41008148 @default.
- W4318818317 hasConcept C4216890 @default.
- W4318818317 hasConcept C56739046 @default.
- W4318818317 hasConcept C75684735 @default.
- W4318818317 hasConcept C79158427 @default.
- W4318818317 hasConceptScore W4318818317C108583219 @default.
- W4318818317 hasConceptScore W4318818317C124101348 @default.
- W4318818317 hasConceptScore W4318818317C125308379 @default.
- W4318818317 hasConceptScore W4318818317C144133560 @default.
- W4318818317 hasConceptScore W4318818317C154945302 @default.
- W4318818317 hasConceptScore W4318818317C162853370 @default.
- W4318818317 hasConceptScore W4318818317C166957645 @default.
- W4318818317 hasConceptScore W4318818317C189076506 @default.
- W4318818317 hasConceptScore W4318818317C18918823 @default.
- W4318818317 hasConceptScore W4318818317C191511416 @default.
- W4318818317 hasConceptScore W4318818317C205649164 @default.
- W4318818317 hasConceptScore W4318818317C2522767166 @default.
- W4318818317 hasConceptScore W4318818317C2780625559 @default.
- W4318818317 hasConceptScore W4318818317C37952496 @default.
- W4318818317 hasConceptScore W4318818317C41008148 @default.
- W4318818317 hasConceptScore W4318818317C4216890 @default.
- W4318818317 hasConceptScore W4318818317C56739046 @default.
- W4318818317 hasConceptScore W4318818317C75684735 @default.
- W4318818317 hasConceptScore W4318818317C79158427 @default.
- W4318818317 hasLocation W43188183171 @default.
- W4318818317 hasOpenAccess W4318818317 @default.
- W4318818317 hasPrimaryLocation W43188183171 @default.
- W4318818317 hasRelatedWork W2509056639 @default.
- W4318818317 hasRelatedWork W2513058025 @default.
- W4318818317 hasRelatedWork W2567328750 @default.
- W4318818317 hasRelatedWork W2946587456 @default.
- W4318818317 hasRelatedWork W2967707828 @default.
- W4318818317 hasRelatedWork W3171550708 @default.
- W4318818317 hasRelatedWork W4212976760 @default.
- W4318818317 hasRelatedWork W4250096199 @default.
- W4318818317 hasRelatedWork W3025533110 @default.
- W4318818317 hasRelatedWork W3121830558 @default.
- W4318818317 isParatext "false" @default.
- W4318818317 isRetracted "false" @default.