Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318826073> ?p ?o ?g. }
- W4318826073 endingPage "204" @default.
- W4318826073 startingPage "186" @default.
- W4318826073 abstract "The Neonatal intensive care unit (NICU) is a specialized section for newborn babies. The neonates are in vulnerable conditions in the ICU, so the predictive models will help to indicate the seriousness of the patients and assist the doctors in taking immediate actions. The Medical Information Mart for Intensive Care III (MIMIC-III) dataset is used in this research. The medicines medicated in critical newborn children were detected, and how the drugs and the doses of drugs can affect the Length of Stay (LOS) in NICU is analyzed. The predictive result of ICU Length of Stay (LOS) for the patients admitted to NICU for seven days is analyzed. Different Machine Learning algorithms were implemented for developing the classification model, and Logistic Regression Algorithm performed well and showed an F1 score of about 85%, which was better than the F1 score of the deep learning model long Short-Term Memory (LSTM). The automated Machine Learning (AutoML) tool, AutoNLP was also implemented for classifying LOS. But traditional methods demonstrated better performance in comparison to AutoML." @default.
- W4318826073 created "2023-02-02" @default.
- W4318826073 creator A5026017970 @default.
- W4318826073 creator A5028481952 @default.
- W4318826073 date "2022-01-01" @default.
- W4318826073 modified "2023-09-27" @default.
- W4318826073 title "Machine Learning Models to Analyze the Effect of Drugs on Neonatal-ICU Length of Stay" @default.
- W4318826073 cites W2396881363 @default.
- W4318826073 cites W2768956845 @default.
- W4318826073 cites W2794496820 @default.
- W4318826073 cites W2904739583 @default.
- W4318826073 cites W2905451100 @default.
- W4318826073 cites W2990621876 @default.
- W4318826073 cites W3082259923 @default.
- W4318826073 cites W3089578393 @default.
- W4318826073 cites W3090453844 @default.
- W4318826073 cites W3090817858 @default.
- W4318826073 cites W3111397582 @default.
- W4318826073 cites W3111685966 @default.
- W4318826073 cites W3112404602 @default.
- W4318826073 cites W3112503440 @default.
- W4318826073 cites W3112624130 @default.
- W4318826073 cites W3113314792 @default.
- W4318826073 cites W3115837771 @default.
- W4318826073 cites W3118347226 @default.
- W4318826073 cites W3119457593 @default.
- W4318826073 cites W3120018734 @default.
- W4318826073 cites W3131152125 @default.
- W4318826073 cites W3133593829 @default.
- W4318826073 cites W3148867062 @default.
- W4318826073 cites W3155399122 @default.
- W4318826073 cites W3162881778 @default.
- W4318826073 cites W3177354338 @default.
- W4318826073 cites W3185295788 @default.
- W4318826073 cites W3186593818 @default.
- W4318826073 cites W3192818153 @default.
- W4318826073 cites W3194074498 @default.
- W4318826073 cites W3199187641 @default.
- W4318826073 cites W3199364093 @default.
- W4318826073 cites W3200718449 @default.
- W4318826073 cites W3200761011 @default.
- W4318826073 cites W3201367047 @default.
- W4318826073 cites W4200166643 @default.
- W4318826073 cites W4206133707 @default.
- W4318826073 cites W4206440813 @default.
- W4318826073 cites W4207012013 @default.
- W4318826073 cites W4226173371 @default.
- W4318826073 cites W4226267190 @default.
- W4318826073 cites W4285282440 @default.
- W4318826073 cites W4285301343 @default.
- W4318826073 cites W4289171903 @default.
- W4318826073 cites W4298190905 @default.
- W4318826073 cites W4301221287 @default.
- W4318826073 cites W4312543040 @default.
- W4318826073 doi "https://doi.org/10.1007/978-3-031-24801-6_14" @default.
- W4318826073 hasPublicationYear "2022" @default.
- W4318826073 type Work @default.
- W4318826073 citedByCount "0" @default.
- W4318826073 crossrefType "book-chapter" @default.
- W4318826073 hasAuthorship W4318826073A5026017970 @default.
- W4318826073 hasAuthorship W4318826073A5028481952 @default.
- W4318826073 hasConcept C119857082 @default.
- W4318826073 hasConcept C151956035 @default.
- W4318826073 hasConcept C154945302 @default.
- W4318826073 hasConcept C17744445 @default.
- W4318826073 hasConcept C177713679 @default.
- W4318826073 hasConcept C187212893 @default.
- W4318826073 hasConcept C199539241 @default.
- W4318826073 hasConcept C2776376669 @default.
- W4318826073 hasConcept C2776650110 @default.
- W4318826073 hasConcept C2777091541 @default.
- W4318826073 hasConcept C2987404301 @default.
- W4318826073 hasConcept C41008148 @default.
- W4318826073 hasConcept C71924100 @default.
- W4318826073 hasConceptScore W4318826073C119857082 @default.
- W4318826073 hasConceptScore W4318826073C151956035 @default.
- W4318826073 hasConceptScore W4318826073C154945302 @default.
- W4318826073 hasConceptScore W4318826073C17744445 @default.
- W4318826073 hasConceptScore W4318826073C177713679 @default.
- W4318826073 hasConceptScore W4318826073C187212893 @default.
- W4318826073 hasConceptScore W4318826073C199539241 @default.
- W4318826073 hasConceptScore W4318826073C2776376669 @default.
- W4318826073 hasConceptScore W4318826073C2776650110 @default.
- W4318826073 hasConceptScore W4318826073C2777091541 @default.
- W4318826073 hasConceptScore W4318826073C2987404301 @default.
- W4318826073 hasConceptScore W4318826073C41008148 @default.
- W4318826073 hasConceptScore W4318826073C71924100 @default.
- W4318826073 hasLocation W43188260731 @default.
- W4318826073 hasOpenAccess W4318826073 @default.
- W4318826073 hasPrimaryLocation W43188260731 @default.
- W4318826073 hasRelatedWork W1999976280 @default.
- W4318826073 hasRelatedWork W2109449223 @default.
- W4318826073 hasRelatedWork W2134097741 @default.
- W4318826073 hasRelatedWork W2152649362 @default.
- W4318826073 hasRelatedWork W2407023910 @default.
- W4318826073 hasRelatedWork W2427496833 @default.
- W4318826073 hasRelatedWork W2554556750 @default.
- W4318826073 hasRelatedWork W2886329248 @default.