Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318947317> ?p ?o ?g. }
- W4318947317 endingPage "055002" @default.
- W4318947317 startingPage "055002" @default.
- W4318947317 abstract "Abstract Objective: A constant relative biological effectiveness of 1.1 in current clinical practice of proton radiotherapy (RT) is a crude approximation and may severely underestimate the biological dose from proton RT to normal tissues, especially near the treatment target at the end of Bragg peaks that exhibits high linear energy transfer (LET). LET optimization can account for biological effectiveness of protons during treatment planning, for minimizing biological proton dose and hot spots to normal tissues. However, the LET optimization is usually nonlinear and nonconvex to solve, for which this work will develop an effective optimization method based on iterative convex relaxation (ICR). Approach : In contrast to the generic nonlinear optimization method, such as Quasi-Newton (QN) method, that does not account for specific characteristics of LET optimization, ICR is tailored to LET modeling and optimization in order to effectively and efficiently solve the LET problem. Specifically, nonlinear dose-averaged LET term is iteratively linearized and becomes convex during ICR, while nonconvex dose-volume constraint and minimum-monitor-unit constraint are also handled by ICR, so that the solution for LET optimization is obtained by solving a sequence of convex and linearized convex subproblems. Since the high LET mostly occurs near the target, a 1 cm normal-tissue expansion of clinical target volume (CTV) (excluding CTV), i.e. CTV1cm, is defined to as an auxiliary structure during treatment planning, where LET is minimized. Main results : ICR was validated in comparison with QN for abdomen, lung, and head-and-neck cases. ICR was effective for LET optimization, as ICR substantially reduced the LET and biological dose in CTV1cm the ring, with preserved dose conformality to CTV. Compared to QN, ICR had smaller LET, physical and biological dose in CTV1cm, and higher conformity index values; ICR was also computationally more efficient, which was about 3 times faster than QN. Significance : A LET-specific optimization method based on ICR has been developed for solving proton LET optimization, which has been shown to be more computationally efficient than generic nonlinear optimizer via QN, with better plan quality in terms of LET, biological and physical dose conformality." @default.
- W4318947317 created "2023-02-03" @default.
- W4318947317 creator A5009854212 @default.
- W4318947317 creator A5027165453 @default.
- W4318947317 creator A5040628771 @default.
- W4318947317 creator A5042899877 @default.
- W4318947317 creator A5078077963 @default.
- W4318947317 date "2023-02-20" @default.
- W4318947317 modified "2023-10-01" @default.
- W4318947317 title "An iterative convex relaxation method for proton LET optimization" @default.
- W4318947317 cites W1923055195 @default.
- W4318947317 cites W1969699382 @default.
- W4318947317 cites W1974015666 @default.
- W4318947317 cites W1982059935 @default.
- W4318947317 cites W1983273276 @default.
- W4318947317 cites W1985075815 @default.
- W4318947317 cites W2030688434 @default.
- W4318947317 cites W2040992522 @default.
- W4318947317 cites W2043603625 @default.
- W4318947317 cites W2044774090 @default.
- W4318947317 cites W2065444952 @default.
- W4318947317 cites W2074443504 @default.
- W4318947317 cites W2079250348 @default.
- W4318947317 cites W2081388291 @default.
- W4318947317 cites W2083770395 @default.
- W4318947317 cites W2111298039 @default.
- W4318947317 cites W2116345430 @default.
- W4318947317 cites W2123703108 @default.
- W4318947317 cites W2147337616 @default.
- W4318947317 cites W2287874371 @default.
- W4318947317 cites W2296610531 @default.
- W4318947317 cites W2299288972 @default.
- W4318947317 cites W2333432395 @default.
- W4318947317 cites W2414102382 @default.
- W4318947317 cites W2513819086 @default.
- W4318947317 cites W2572695447 @default.
- W4318947317 cites W2599198044 @default.
- W4318947317 cites W2604380817 @default.
- W4318947317 cites W2764174300 @default.
- W4318947317 cites W2770163048 @default.
- W4318947317 cites W2770989174 @default.
- W4318947317 cites W2936183363 @default.
- W4318947317 cites W2944932571 @default.
- W4318947317 cites W2973310415 @default.
- W4318947317 cites W3002590463 @default.
- W4318947317 cites W3034433855 @default.
- W4318947317 cites W3038719826 @default.
- W4318947317 cites W3093052621 @default.
- W4318947317 cites W3137404195 @default.
- W4318947317 cites W3160503755 @default.
- W4318947317 cites W3175701890 @default.
- W4318947317 cites W3178514503 @default.
- W4318947317 cites W3211606847 @default.
- W4318947317 cites W4200161526 @default.
- W4318947317 cites W4285726345 @default.
- W4318947317 cites W4292363360 @default.
- W4318947317 cites W4301014524 @default.
- W4318947317 doi "https://doi.org/10.1088/1361-6560/acb88d" @default.
- W4318947317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36731144" @default.
- W4318947317 hasPublicationYear "2023" @default.
- W4318947317 type Work @default.
- W4318947317 citedByCount "3" @default.
- W4318947317 countsByYear W43189473172023 @default.
- W4318947317 crossrefType "journal-article" @default.
- W4318947317 hasAuthorship W4318947317A5009854212 @default.
- W4318947317 hasAuthorship W4318947317A5027165453 @default.
- W4318947317 hasAuthorship W4318947317A5040628771 @default.
- W4318947317 hasAuthorship W4318947317A5042899877 @default.
- W4318947317 hasAuthorship W4318947317A5078077963 @default.
- W4318947317 hasConcept C112680207 @default.
- W4318947317 hasConcept C11413529 @default.
- W4318947317 hasConcept C115527620 @default.
- W4318947317 hasConcept C121332964 @default.
- W4318947317 hasConcept C126255220 @default.
- W4318947317 hasConcept C137836250 @default.
- W4318947317 hasConcept C15744967 @default.
- W4318947317 hasConcept C157972887 @default.
- W4318947317 hasConcept C158622935 @default.
- W4318947317 hasConcept C2524010 @default.
- W4318947317 hasConcept C2776029896 @default.
- W4318947317 hasConcept C28826006 @default.
- W4318947317 hasConcept C33923547 @default.
- W4318947317 hasConcept C41008148 @default.
- W4318947317 hasConcept C62520636 @default.
- W4318947317 hasConcept C77805123 @default.
- W4318947317 hasConceptScore W4318947317C112680207 @default.
- W4318947317 hasConceptScore W4318947317C11413529 @default.
- W4318947317 hasConceptScore W4318947317C115527620 @default.
- W4318947317 hasConceptScore W4318947317C121332964 @default.
- W4318947317 hasConceptScore W4318947317C126255220 @default.
- W4318947317 hasConceptScore W4318947317C137836250 @default.
- W4318947317 hasConceptScore W4318947317C15744967 @default.
- W4318947317 hasConceptScore W4318947317C157972887 @default.
- W4318947317 hasConceptScore W4318947317C158622935 @default.
- W4318947317 hasConceptScore W4318947317C2524010 @default.
- W4318947317 hasConceptScore W4318947317C2776029896 @default.
- W4318947317 hasConceptScore W4318947317C28826006 @default.
- W4318947317 hasConceptScore W4318947317C33923547 @default.