Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318953381> ?p ?o ?g. }
- W4318953381 endingPage "065103" @default.
- W4318953381 startingPage "065103" @default.
- W4318953381 abstract "Abstract Feature extraction based on sparse representation is widely applied in the field of mechanical fault diagnosis. L1 norm regularization is a classical sparse regularization method, but this method has sparse underestimation for large-value features. A signal sparse representation method based on generalized multivariate logarithmic regularization is proposed in this paper. First, the sparse penalty term in the proposed method is designed according to the minimum convolution and logarithmic function, namely the generalized logarithmic non-convex penalty function. Then, the convexity condition of the objective function is studied to verify the feasibility of the method. The applicability of the method is also improved by analyzing the parameter constraint relation in the objective function. Finally, the sparse optimal solution is obtained by the forward-back splitting algorithm. Experiments show that compared with other non-convex sparse models, the proposed method can solve the problem of sparse underestimation more effectively and improve the reliability of gearbox fault diagnosis." @default.
- W4318953381 created "2023-02-03" @default.
- W4318953381 creator A5014535828 @default.
- W4318953381 creator A5018945216 @default.
- W4318953381 creator A5024385262 @default.
- W4318953381 creator A5054878926 @default.
- W4318953381 creator A5056780326 @default.
- W4318953381 creator A5085244737 @default.
- W4318953381 date "2023-03-03" @default.
- W4318953381 modified "2023-10-18" @default.
- W4318953381 title "Gearbox fault diagnosis based on generalized multivariate logarithmic regularization" @default.
- W4318953381 cites W1196380178 @default.
- W4318953381 cites W1895097333 @default.
- W4318953381 cites W2019505419 @default.
- W4318953381 cites W2038517753 @default.
- W4318953381 cites W2069713687 @default.
- W4318953381 cites W2125056386 @default.
- W4318953381 cites W2620850570 @default.
- W4318953381 cites W2792894469 @default.
- W4318953381 cites W2848973885 @default.
- W4318953381 cites W2884730834 @default.
- W4318953381 cites W2890932075 @default.
- W4318953381 cites W2912025658 @default.
- W4318953381 cites W2938649315 @default.
- W4318953381 cites W2940658606 @default.
- W4318953381 cites W2941185621 @default.
- W4318953381 cites W2945776902 @default.
- W4318953381 cites W2990543002 @default.
- W4318953381 cites W2995279030 @default.
- W4318953381 cites W3015916336 @default.
- W4318953381 cites W3023666632 @default.
- W4318953381 cites W3033043953 @default.
- W4318953381 cites W3040018885 @default.
- W4318953381 cites W3081657747 @default.
- W4318953381 cites W3094041438 @default.
- W4318953381 cites W3108989920 @default.
- W4318953381 cites W3124898479 @default.
- W4318953381 cites W3131531587 @default.
- W4318953381 cites W3136190606 @default.
- W4318953381 cites W3155835896 @default.
- W4318953381 cites W3159420469 @default.
- W4318953381 cites W3159711536 @default.
- W4318953381 cites W3160541836 @default.
- W4318953381 cites W3164013269 @default.
- W4318953381 cites W3173105361 @default.
- W4318953381 cites W3173710163 @default.
- W4318953381 cites W3194501265 @default.
- W4318953381 cites W3201135244 @default.
- W4318953381 cites W3211356574 @default.
- W4318953381 cites W3214433557 @default.
- W4318953381 cites W3217212503 @default.
- W4318953381 cites W4210288369 @default.
- W4318953381 cites W4211058054 @default.
- W4318953381 cites W4221107308 @default.
- W4318953381 cites W4229650096 @default.
- W4318953381 cites W4285403515 @default.
- W4318953381 cites W4292998787 @default.
- W4318953381 cites W4310875092 @default.
- W4318953381 doi "https://doi.org/10.1088/1361-6501/acb83b" @default.
- W4318953381 hasPublicationYear "2023" @default.
- W4318953381 type Work @default.
- W4318953381 citedByCount "1" @default.
- W4318953381 countsByYear W43189533812023 @default.
- W4318953381 crossrefType "journal-article" @default.
- W4318953381 hasAuthorship W4318953381A5014535828 @default.
- W4318953381 hasAuthorship W4318953381A5018945216 @default.
- W4318953381 hasAuthorship W4318953381A5024385262 @default.
- W4318953381 hasAuthorship W4318953381A5054878926 @default.
- W4318953381 hasAuthorship W4318953381A5056780326 @default.
- W4318953381 hasAuthorship W4318953381A5085244737 @default.
- W4318953381 hasConcept C106159729 @default.
- W4318953381 hasConcept C112680207 @default.
- W4318953381 hasConcept C11413529 @default.
- W4318953381 hasConcept C124066611 @default.
- W4318953381 hasConcept C126255220 @default.
- W4318953381 hasConcept C134306372 @default.
- W4318953381 hasConcept C154945302 @default.
- W4318953381 hasConcept C157972887 @default.
- W4318953381 hasConcept C162324750 @default.
- W4318953381 hasConcept C2524010 @default.
- W4318953381 hasConcept C2776135515 @default.
- W4318953381 hasConcept C28826006 @default.
- W4318953381 hasConcept C33923547 @default.
- W4318953381 hasConcept C39927690 @default.
- W4318953381 hasConcept C41008148 @default.
- W4318953381 hasConcept C45347329 @default.
- W4318953381 hasConcept C50644808 @default.
- W4318953381 hasConcept C6180225 @default.
- W4318953381 hasConcept C72134830 @default.
- W4318953381 hasConceptScore W4318953381C106159729 @default.
- W4318953381 hasConceptScore W4318953381C112680207 @default.
- W4318953381 hasConceptScore W4318953381C11413529 @default.
- W4318953381 hasConceptScore W4318953381C124066611 @default.
- W4318953381 hasConceptScore W4318953381C126255220 @default.
- W4318953381 hasConceptScore W4318953381C134306372 @default.
- W4318953381 hasConceptScore W4318953381C154945302 @default.
- W4318953381 hasConceptScore W4318953381C157972887 @default.
- W4318953381 hasConceptScore W4318953381C162324750 @default.