Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318969504> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4318969504 abstract "The backbone of the Indian country is enriched with growing crops and cultivation in an effective way. The economical background is a major impact on countries’ financial stages where there is a lack of knowledge to support agriculture as well. In accordance with agriculture and plants development assessment of needs are also analyzed. However, there are several problems to be addressed in crops and plant diseases and the main focus is to reduce the disease on leaves texture that can be associated with the health and wealth of the country. To detect plant diseases there are several methods applied from existing techniques such as Machine Learning (ML) and Deep Learning (DL) where the species produces various results and comparison of results are facing certain limitations. To overcome the limitations in the existing deep learning Convolution Neural Network (CNN) framework such as DenseNet, the Enhanced EfficientNet (EEN) is proposed in the research work to overcome the limitations. To predict the plant disease in the early phase using the proposed algorithm can produce better accuracy such that the quality of crops can be protected without diseases affected. The main step in the proposed idea is to examine the performance by detecting the diseases in leaves by analyzing images from the dataset downloaded from Kaggle in the name of PlantVillage. These datasets were used with the leaf images to detect the severity of plants by extracting multiple features such as textures of multi-labeled leaves, color deviation in the early stage, and shape variations also considered. Classifier using EEN preprocess and classifies accordingly. There is an elimination of regions after segmenting the image according to the classes. Such feature mapping gives the exact results faster with 99.8% of accuracy." @default.
- W4318969504 created "2023-02-03" @default.
- W4318969504 creator A5014054181 @default.
- W4318969504 creator A5032508651 @default.
- W4318969504 creator A5085942006 @default.
- W4318969504 date "2022-12-08" @default.
- W4318969504 modified "2023-09-23" @default.
- W4318969504 title "Plant Disease Detection Using Enhanced EfficientNet Architecture in Comparison with DenseNet to Analyze the Severity in Leaves with Performance Measures" @default.
- W4318969504 cites W2789255992 @default.
- W4318969504 cites W3047000905 @default.
- W4318969504 cites W3093950702 @default.
- W4318969504 cites W3100036209 @default.
- W4318969504 cites W3113103968 @default.
- W4318969504 cites W3118346868 @default.
- W4318969504 cites W3130766450 @default.
- W4318969504 cites W3141915075 @default.
- W4318969504 cites W3149839483 @default.
- W4318969504 cites W3160766702 @default.
- W4318969504 cites W3168562900 @default.
- W4318969504 cites W3169011232 @default.
- W4318969504 cites W3193470762 @default.
- W4318969504 cites W3210629742 @default.
- W4318969504 cites W3214207881 @default.
- W4318969504 cites W4211104264 @default.
- W4318969504 cites W4220940905 @default.
- W4318969504 cites W4221045755 @default.
- W4318969504 cites W4225123790 @default.
- W4318969504 doi "https://doi.org/10.1109/icdsaai55433.2022.10028850" @default.
- W4318969504 hasPublicationYear "2022" @default.
- W4318969504 type Work @default.
- W4318969504 citedByCount "0" @default.
- W4318969504 crossrefType "proceedings-article" @default.
- W4318969504 hasAuthorship W4318969504A5014054181 @default.
- W4318969504 hasAuthorship W4318969504A5032508651 @default.
- W4318969504 hasAuthorship W4318969504A5085942006 @default.
- W4318969504 hasConcept C108583219 @default.
- W4318969504 hasConcept C111472728 @default.
- W4318969504 hasConcept C118518473 @default.
- W4318969504 hasConcept C119857082 @default.
- W4318969504 hasConcept C120217122 @default.
- W4318969504 hasConcept C127413603 @default.
- W4318969504 hasConcept C138885662 @default.
- W4318969504 hasConcept C150903083 @default.
- W4318969504 hasConcept C153180895 @default.
- W4318969504 hasConcept C154945302 @default.
- W4318969504 hasConcept C169258074 @default.
- W4318969504 hasConcept C18903297 @default.
- W4318969504 hasConcept C2779530757 @default.
- W4318969504 hasConcept C3019235130 @default.
- W4318969504 hasConcept C41008148 @default.
- W4318969504 hasConcept C50644808 @default.
- W4318969504 hasConcept C81363708 @default.
- W4318969504 hasConcept C86803240 @default.
- W4318969504 hasConcept C88463610 @default.
- W4318969504 hasConcept C95623464 @default.
- W4318969504 hasConceptScore W4318969504C108583219 @default.
- W4318969504 hasConceptScore W4318969504C111472728 @default.
- W4318969504 hasConceptScore W4318969504C118518473 @default.
- W4318969504 hasConceptScore W4318969504C119857082 @default.
- W4318969504 hasConceptScore W4318969504C120217122 @default.
- W4318969504 hasConceptScore W4318969504C127413603 @default.
- W4318969504 hasConceptScore W4318969504C138885662 @default.
- W4318969504 hasConceptScore W4318969504C150903083 @default.
- W4318969504 hasConceptScore W4318969504C153180895 @default.
- W4318969504 hasConceptScore W4318969504C154945302 @default.
- W4318969504 hasConceptScore W4318969504C169258074 @default.
- W4318969504 hasConceptScore W4318969504C18903297 @default.
- W4318969504 hasConceptScore W4318969504C2779530757 @default.
- W4318969504 hasConceptScore W4318969504C3019235130 @default.
- W4318969504 hasConceptScore W4318969504C41008148 @default.
- W4318969504 hasConceptScore W4318969504C50644808 @default.
- W4318969504 hasConceptScore W4318969504C81363708 @default.
- W4318969504 hasConceptScore W4318969504C86803240 @default.
- W4318969504 hasConceptScore W4318969504C88463610 @default.
- W4318969504 hasConceptScore W4318969504C95623464 @default.
- W4318969504 hasLocation W43189695041 @default.
- W4318969504 hasOpenAccess W4318969504 @default.
- W4318969504 hasPrimaryLocation W43189695041 @default.
- W4318969504 hasRelatedWork W2275058042 @default.
- W4318969504 hasRelatedWork W2470368200 @default.
- W4318969504 hasRelatedWork W2738221750 @default.
- W4318969504 hasRelatedWork W3211546796 @default.
- W4318969504 hasRelatedWork W4223564025 @default.
- W4318969504 hasRelatedWork W4281616679 @default.
- W4318969504 hasRelatedWork W4286233849 @default.
- W4318969504 hasRelatedWork W4322727400 @default.
- W4318969504 hasRelatedWork W4327499916 @default.
- W4318969504 hasRelatedWork W564581980 @default.
- W4318969504 isParatext "false" @default.
- W4318969504 isRetracted "false" @default.
- W4318969504 workType "article" @default.