Matches in SemOpenAlex for { <https://semopenalex.org/work/W4318996898> ?p ?o ?g. }
- W4318996898 abstract "Objectives It is still a challenge to differentiate space-occupying brain lesions such as tumefactive demyelinating lesions (TDLs), tumefactive primary angiitis of the central nervous system (TPACNS), primary central nervous system lymphoma (PCNSL), and brain gliomas. Convolutional neural networks (CNNs) have been used to analyze complex medical data and have proven transformative for image-based applications. It can quickly acquire diseases' radiographic features and correct doctors' diagnostic bias to improve diagnostic efficiency and accuracy. The study aimed to assess the value of CNN-based deep learning model in the differential diagnosis of space-occupying brain diseases on MRI. Methods We retrospectively analyzed clinical and MRI data from 480 patients with TDLs ( n = 116), TPACNS ( n = 64), PCNSL ( n = 150), and brain gliomas ( n = 150). The patients were randomly assigned to training ( n = 240), testing ( n = 73), calibration ( n = 96), and validation ( n = 71) groups. And a CNN-implemented deep learning model guided by clinical experts was developed to identify the contrast-enhanced T 1 -weighted sequence lesions of these four diseases. We utilized accuracy, sensitivity, specificity, and area under the curve (AUC) to evaluate the performance of the CNN model. The model's performance was then compared to the neuroradiologists' diagnosis. Results The CNN model had a total accuracy of 87% which was higher than senior neuroradiologists (74%), and the AUC of TDLs, PCNSL, TPACNS and gliomas were 0.92, 0.92, 0.89 and 0.88, respectively. Conclusion The CNN model can accurately identify specific radiographic features of TDLs, TPACNS, PCNSL, and gliomas. It has the potential to be an effective auxiliary diagnostic tool in the clinic, assisting inexperienced clinicians in reducing diagnostic bias and improving diagnostic efficiency." @default.
- W4318996898 created "2023-02-03" @default.
- W4318996898 creator A5002803940 @default.
- W4318996898 creator A5002866069 @default.
- W4318996898 creator A5002979806 @default.
- W4318996898 creator A5010491128 @default.
- W4318996898 creator A5042301216 @default.
- W4318996898 creator A5054573427 @default.
- W4318996898 creator A5067407624 @default.
- W4318996898 creator A5069921704 @default.
- W4318996898 creator A5078461881 @default.
- W4318996898 creator A5083108381 @default.
- W4318996898 date "2023-02-02" @default.
- W4318996898 modified "2023-10-06" @default.
- W4318996898 title "The value of convolutional neural networks-based deep learning model in differential diagnosis of space-occupying brain diseases" @default.
- W4318996898 cites W1523980033 @default.
- W4318996898 cites W1568033114 @default.
- W4318996898 cites W1893588436 @default.
- W4318996898 cites W1993473032 @default.
- W4318996898 cites W2019232284 @default.
- W4318996898 cites W2070626239 @default.
- W4318996898 cites W2148977460 @default.
- W4318996898 cites W2160382843 @default.
- W4318996898 cites W2194775991 @default.
- W4318996898 cites W2295059886 @default.
- W4318996898 cites W2395767490 @default.
- W4318996898 cites W23958947 @default.
- W4318996898 cites W2499366951 @default.
- W4318996898 cites W2537039865 @default.
- W4318996898 cites W2618530766 @default.
- W4318996898 cites W2621028221 @default.
- W4318996898 cites W2662929969 @default.
- W4318996898 cites W2776890449 @default.
- W4318996898 cites W2786907498 @default.
- W4318996898 cites W2802159733 @default.
- W4318996898 cites W2804187314 @default.
- W4318996898 cites W2887424400 @default.
- W4318996898 cites W2901132488 @default.
- W4318996898 cites W2908618284 @default.
- W4318996898 cites W2919115771 @default.
- W4318996898 cites W2920936240 @default.
- W4318996898 cites W2980999274 @default.
- W4318996898 cites W3006054280 @default.
- W4318996898 cites W3010697071 @default.
- W4318996898 cites W3040152568 @default.
- W4318996898 cites W3101912940 @default.
- W4318996898 cites W3124307928 @default.
- W4318996898 cites W3127966350 @default.
- W4318996898 cites W3135459813 @default.
- W4318996898 cites W3162324901 @default.
- W4318996898 cites W3163071387 @default.
- W4318996898 cites W3195091756 @default.
- W4318996898 cites W4211220688 @default.
- W4318996898 cites W4254943485 @default.
- W4318996898 doi "https://doi.org/10.3389/fneur.2023.1107957" @default.
- W4318996898 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36816568" @default.
- W4318996898 hasPublicationYear "2023" @default.
- W4318996898 type Work @default.
- W4318996898 citedByCount "1" @default.
- W4318996898 countsByYear W43189968982023 @default.
- W4318996898 crossrefType "journal-article" @default.
- W4318996898 hasAuthorship W4318996898A5002803940 @default.
- W4318996898 hasAuthorship W4318996898A5002866069 @default.
- W4318996898 hasAuthorship W4318996898A5002979806 @default.
- W4318996898 hasAuthorship W4318996898A5010491128 @default.
- W4318996898 hasAuthorship W4318996898A5042301216 @default.
- W4318996898 hasAuthorship W4318996898A5054573427 @default.
- W4318996898 hasAuthorship W4318996898A5067407624 @default.
- W4318996898 hasAuthorship W4318996898A5069921704 @default.
- W4318996898 hasAuthorship W4318996898A5078461881 @default.
- W4318996898 hasAuthorship W4318996898A5083108381 @default.
- W4318996898 hasBestOaLocation W43189968981 @default.
- W4318996898 hasConcept C108583219 @default.
- W4318996898 hasConcept C126838900 @default.
- W4318996898 hasConcept C142724271 @default.
- W4318996898 hasConcept C153180895 @default.
- W4318996898 hasConcept C154945302 @default.
- W4318996898 hasConcept C2779338263 @default.
- W4318996898 hasConcept C2780801072 @default.
- W4318996898 hasConcept C2781173314 @default.
- W4318996898 hasConcept C41008148 @default.
- W4318996898 hasConcept C71924100 @default.
- W4318996898 hasConcept C81363708 @default.
- W4318996898 hasConceptScore W4318996898C108583219 @default.
- W4318996898 hasConceptScore W4318996898C126838900 @default.
- W4318996898 hasConceptScore W4318996898C142724271 @default.
- W4318996898 hasConceptScore W4318996898C153180895 @default.
- W4318996898 hasConceptScore W4318996898C154945302 @default.
- W4318996898 hasConceptScore W4318996898C2779338263 @default.
- W4318996898 hasConceptScore W4318996898C2780801072 @default.
- W4318996898 hasConceptScore W4318996898C2781173314 @default.
- W4318996898 hasConceptScore W4318996898C41008148 @default.
- W4318996898 hasConceptScore W4318996898C71924100 @default.
- W4318996898 hasConceptScore W4318996898C81363708 @default.
- W4318996898 hasLocation W43189968981 @default.
- W4318996898 hasLocation W43189968982 @default.
- W4318996898 hasLocation W43189968983 @default.
- W4318996898 hasOpenAccess W4318996898 @default.
- W4318996898 hasPrimaryLocation W43189968981 @default.
- W4318996898 hasRelatedWork W2731899572 @default.